我听说利斯科夫替换原则(LSP)是面向对象设计的基本原则。它是什么?它的一些使用例子是什么?


当前回答

设q(x)是关于类型为T的x的对象的可证明属性,那么q(y)对于类型为S的对象y应该是可证明的,其中S是T的子类型。


实际上,公认的答案并不是利斯科夫原理的反例。正方形自然是一个特定的矩形,因此从类矩形继承是完全有意义的。你只需要以这样的方式实现它:

@Override
public void setHeight(double height) {
   this.height = height;
   this.width = height; // since it's a square
}

@Override
public void setWidth(double width) {
   setHeight(width);
}

所以,提供了一个很好的例子,然而,这是一个反例:

class Family:
-- getChildrenCount()

class FamilyWithKids extends Family:
-- getChildrenCount() { return childrenCount; } // always > 0

class DeadFamilyWithKids extends FamilyWithKids:
-- getChildrenCount() { return 0; }
-- getChildrenCountWhenAlive() { return childrenCountWhenAlive; }

在这个实现中,DeadFamilyWithKids不能从FamilyWithKids继承,因为getChildrenCount()返回0,而从FamilyWithKids它应该总是返回大于0的值。

其他回答

罗伯特·马丁有一篇关于利斯科夫替换原理的优秀论文。它讨论了可能违反原则的微妙和不那么微妙的方式。

论文的一些相关部分(注意,第二个例子被大量压缩):

A Simple Example of a Violation of LSP One of the most glaring violations of this principle is the use of C++ Run-Time Type Information (RTTI) to select a function based upon the type of an object. i.e.: void DrawShape(const Shape& s) { if (typeid(s) == typeid(Square)) DrawSquare(static_cast<Square&>(s)); else if (typeid(s) == typeid(Circle)) DrawCircle(static_cast<Circle&>(s)); } Clearly the DrawShape function is badly formed. It must know about every possible derivative of the Shape class, and it must be changed whenever new derivatives of Shape are created. Indeed, many view the structure of this function as anathema to Object Oriented Design. Square and Rectangle, a More Subtle Violation. However, there are other, far more subtle, ways of violating the LSP. Consider an application which uses the Rectangle class as described below: class Rectangle { public: void SetWidth(double w) {itsWidth=w;} void SetHeight(double h) {itsHeight=w;} double GetHeight() const {return itsHeight;} double GetWidth() const {return itsWidth;} private: double itsWidth; double itsHeight; }; [...] Imagine that one day the users demand the ability to manipulate squares in addition to rectangles. [...] Clearly, a square is a rectangle for all normal intents and purposes. Since the ISA relationship holds, it is logical to model the Square class as being derived from Rectangle. [...] Square will inherit the SetWidth and SetHeight functions. These functions are utterly inappropriate for a Square, since the width and height of a square are identical. This should be a significant clue that there is a problem with the design. However, there is a way to sidestep the problem. We could override SetWidth and SetHeight [...] But consider the following function: void f(Rectangle& r) { r.SetWidth(32); // calls Rectangle::SetWidth } If we pass a reference to a Square object into this function, the Square object will be corrupted because the height won’t be changed. This is a clear violation of LSP. The function does not work for derivatives of its arguments. [...]

以Board数组的形式实现ThreeDBoard会有用吗?

也许你想把不同平面上的ThreeDBoard切片作为一个板。在这种情况下,您可能希望为Board抽象出一个接口(或抽象类),以允许多种实现。

就外部接口而言,您可能希望为TwoDBoard和ThreeDBoard提取一个Board接口(尽管上述方法都不适合)。

可替代性是面向对象编程中的一个原则,它指出,在计算机程序中,如果S是T的子类型,那么类型T的对象可以被类型S的对象替换

让我们用Java做一个简单的例子:

不好的例子

public class Bird{
    public void fly(){}
}
public class Duck extends Bird{}

鸭子能飞,因为它是鸟,但这个呢:

public class Ostrich extends Bird{}

鸵鸟是一种鸟,但它不能飞,鸵鸟类是鸟类的一个子类,但它不应该能够使用fly方法,这意味着我们打破了LSP原则。

很好的例子

public class Bird{}
public class FlyingBirds extends Bird{
    public void fly(){}
}
public class Duck extends FlyingBirds{}
public class Ostrich extends Bird{} 

关于LSP的一个很好的例子(在我最近听到的播客中,Bob叔叔给出了一个例子)是,有时候在自然语言中听起来正确的东西在代码中却不太适用。

在数学中,正方形是长方形。实际上,它是矩形的专门化。“is a”使您想用继承来建模。然而,如果在代码中你从Rectangle派生出Square,那么Square应该可以在任何你想要Rectangle的地方使用。这就导致了一些奇怪的行为。

假设你在你的Rectangle基类上有SetWidth和SetHeight方法;这似乎完全合乎逻辑。然而,如果你的矩形引用指向一个正方形,那么SetWidth和SetHeight没有意义,因为设置一个会改变另一个来匹配它。在这种情况下,Square未能通过矩形的利斯科夫替换测试,并且让Square继承Rectangle的抽象是一个糟糕的抽象。

你们都应该看看其他用励志海报解释的无价的坚实原则。

A square is a rectangle where the width equals the height. If the square sets two different sizes for the width and height it violates the square invariant. This is worked around by introducing side effects. But if the rectangle had a setSize(height, width) with precondition 0 < height and 0 < width. The derived subtype method requires height == width; a stronger precondition (and that violates lsp). This shows that though square is a rectangle it is not a valid subtype because the precondition is strengthened. The work around (in general a bad thing) cause a side effect and this weakens the post condition (which violates lsp). setWidth on the base has post condition 0 < width. The derived weakens it with height == width.

因此,可调整大小的正方形不是可调整大小的矩形。