Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

(Sasha B的回答非常棒)

这特别地将datetime对象转换为字符串,在原始答案中将转换为None:

# Standard library imports
from datetime import datetime
import json

# 3rd party imports
from sqlalchemy.ext.declarative import DeclarativeMeta

class JsonEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj.__class__, DeclarativeMeta):
            dict = {}

            # Remove invalid fields and just get the column attributes
            columns = [x for x in dir(obj) if not x.startswith("_") and x != "metadata"]

            for column in columns:
                value = obj.__getattribute__(column)

                try:
                    json.dumps(value)
                    dict[column] = value
                except TypeError:
                    if isinstance(value, datetime):
                        dict[column] = value.__str__()
                    else:
                        dict[column] = None
            return dict

        return json.JSONEncoder.default(self, obj)

其他回答

当使用sqlalchemy连接到db I时,这是一个高度可配置的简单解决方案。使用熊猫。

import pandas as pd
import sqlalchemy

#sqlalchemy engine configuration
engine = sqlalchemy.create_engine....

def my_function():
  #read in from sql directly into a pandas dataframe
  #check the pandas documentation for additional config options
  sql_DF = pd.read_sql_table("table_name", con=engine)

  # "orient" is optional here but allows you to specify the json formatting you require
  sql_json = sql_DF.to_json(orient="index")

  return sql_json

安装simplejson by PIP安装simplejson并创建一个类

class Serialise(object):

    def _asdict(self):
        """
        Serialization logic for converting entities using flask's jsonify

        :return: An ordered dictionary
        :rtype: :class:`collections.OrderedDict`
        """

        result = OrderedDict()
        # Get the columns
        for key in self.__mapper__.c.keys():
            if isinstance(getattr(self, key), datetime):
                result["x"] = getattr(self, key).timestamp() * 1000
                result["timestamp"] = result["x"]
            else:
                result[key] = getattr(self, key)

        return result

并将这个类继承到每个orm类,这样这个_asdict函数就会注册到每个orm类,然后。 并在任何地方使用jsonify

https://flask-restplus.readthedocs.io/en/stable/marshalling.html

from flask_restplus import fields, Namespace, marshal
api = Namespace("Student data")
db_data = Student_details.query.all()
data_marshal_obj = api.model(" Data", {
    "id": fields.String(),
    "number": fields.Integer(),
    "house_name": fields.String(),
 })
data_in_json_serialize =  marshal(db_data, data_marshal_obj)}
print(type(data_in_json_serialize )) #  <class 'dict'>

定制序列化编组在烧瓶restpluse

Flask-JsonTools包为您的模型提供了JsonSerializableBase基类的实现。

用法:

from sqlalchemy.ext.declarative import declarative_base
from flask.ext.jsontools import JsonSerializableBase

Base = declarative_base(cls=(JsonSerializableBase,))

class User(Base):
    #...

现在User模型可以神奇地序列化了。

如果你的框架不是Flask,你可以抓取代码

也许你可以使用这样的类

from sqlalchemy.ext.declarative import declared_attr
from sqlalchemy import Table


class Custom:
    """Some custom logic here!"""

    __table__: Table  # def for mypy

    @declared_attr
    def __tablename__(cls):  # pylint: disable=no-self-argument
        return cls.__name__  # pylint: disable= no-member

    def to_dict(self) -> Dict[str, Any]:
        """Serializes only column data."""
        return {c.name: getattr(self, c.name) for c in self.__table__.columns}

Base = declarative_base(cls=Custom)

class MyOwnTable(Base):
    #COLUMNS!

所有对象都有to_dict方法