Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

在SQLAlchemy中使用内置序列化器:

from sqlalchemy.ext.serializer import loads, dumps
obj = MyAlchemyObject()
# serialize object
serialized_obj = dumps(obj)

# deserialize object
obj = loads(serialized_obj)

如果在会话之间传输对象,请记住使用session.expunge(obj)将对象从当前会话中分离出来。 要再次附加它,只需执行session.add(obj)。

其他回答

step1:
class CNAME:
   ...
   def as_dict(self):
       return {item.name: getattr(self, item.name) for item in self.__table__.columns}

step2:
list = []
for data in session.query(CNAME).all():
    list.append(data.as_dict())

step3:
return jsonify(list)

我知道这是一个相当老的帖子。我采取了@SashaB给出的解决方案,并根据我的需要进行了修改。

我添加了以下内容:

字段忽略列表:序列化时要忽略的字段列表 字段替换列表:包含在序列化时要被值替换的字段名的字典。 删除方法和BaseQuery被序列化

我的代码如下:

def alchemy_json_encoder(revisit_self = False, fields_to_expand = [], fields_to_ignore = [], fields_to_replace = {}):
   """
   Serialize SQLAlchemy result into JSon
   :param revisit_self: True / False
   :param fields_to_expand: Fields which are to be expanded for including their children and all
   :param fields_to_ignore: Fields to be ignored while encoding
   :param fields_to_replace: Field keys to be replaced by values assigned in dictionary
   :return: Json serialized SQLAlchemy object
   """
   _visited_objs = []
   class AlchemyEncoder(json.JSONEncoder):
      def default(self, obj):
        if isinstance(obj.__class__, DeclarativeMeta):
            # don't re-visit self
            if revisit_self:
                if obj in _visited_objs:
                    return None
                _visited_objs.append(obj)

            # go through each field in this SQLalchemy class
            fields = {}
            for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata' and x not in fields_to_ignore]:
                val = obj.__getattribute__(field)
                # is this field method defination, or an SQLalchemy object
                if not hasattr(val, "__call__") and not isinstance(val, BaseQuery):
                    field_name = fields_to_replace[field] if field in fields_to_replace else field
                    # is this field another SQLalchemy object, or a list of SQLalchemy objects?
                    if isinstance(val.__class__, DeclarativeMeta) or \
                            (isinstance(val, list) and len(val) > 0 and isinstance(val[0].__class__, DeclarativeMeta)):
                        # unless we're expanding this field, stop here
                        if field not in fields_to_expand:
                            # not expanding this field: set it to None and continue
                            fields[field_name] = None
                            continue

                    fields[field_name] = val
            # a json-encodable dict
            return fields

        return json.JSONEncoder.default(self, obj)
   return AlchemyEncoder

希望它能帮助到一些人!

内置序列化器因utf-8而阻塞,无法解码某些输入的无效开始字节。相反,我的答案是:

def row_to_dict(row):
    temp = row.__dict__
    temp.pop('_sa_instance_state', None)
    return temp


def rows_to_list(rows):
    ret_rows = []
    for row in rows:
        ret_rows.append(row_to_dict(row))
    return ret_rows


@website_blueprint.route('/api/v1/some/endpoint', methods=['GET'])
def some_api():
    '''
    /some_endpoint
    '''
    rows = rows_to_list(SomeModel.query.all())
    response = app.response_class(
        response=jsonplus.dumps(rows),
        status=200,
        mimetype='application/json'
    )
    return response

当使用sqlalchemy连接到db I时,这是一个高度可配置的简单解决方案。使用熊猫。

import pandas as pd
import sqlalchemy

#sqlalchemy engine configuration
engine = sqlalchemy.create_engine....

def my_function():
  #read in from sql directly into a pandas dataframe
  #check the pandas documentation for additional config options
  sql_DF = pd.read_sql_table("table_name", con=engine)

  # "orient" is optional here but allows you to specify the json formatting you require
  sql_json = sql_DF.to_json(orient="index")

  return sql_json

你可以把你的对象输出为一个字典:

class User:
   def as_dict(self):
       return {c.name: getattr(self, c.name) for c in self.__table__.columns}

然后使用User.as_dict()序列化对象。

如将sqlalchemy行对象转换为python dict中所述