我有以下代码:
r = numpy.zeros(shape = (width, height, 9))
它创建了一个宽x高x 9的矩阵,全是0。相反,我想知道是否有一个函数或方法,以一种简单的方式将它们初始化为nan。
我有以下代码:
r = numpy.zeros(shape = (width, height, 9))
它创建了一个宽x高x 9的矩阵,全是0。相反,我想知道是否有一个函数或方法,以一种简单的方式将它们初始化为nan。
当前回答
在numpy中,矢量运算很少需要循环。 你可以创建一个未初始化的数组,并一次分配给所有条目:
>>> a = numpy.empty((3,3,))
>>> a[:] = numpy.nan
>>> a
array([[ NaN, NaN, NaN],
[ NaN, NaN, NaN],
[ NaN, NaN, NaN]])
我已经计时的替代方案a[:] = numpy。a.fill(numpy.nan)由Blaenk发布:
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a.fill(np.nan)"
10000 loops, best of 3: 54.3 usec per loop
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a[:] = np.nan"
10000 loops, best of 3: 88.8 usec per loop
计时显示偏好ndarray.fill(..)作为更快的替代方案。OTOH,我喜欢numpy的方便实现,在这里你可以同时为整个切片赋值,代码的意图非常明确。
注意ndarray。fill在原地执行操作,因此numpy.empty((3,3,)).fill(numpy.nan)将返回None。
其他回答
你熟悉numpy.nan吗?
你可以创建你自己的方法,比如:
def nans(shape, dtype=float):
a = numpy.empty(shape, dtype)
a.fill(numpy.nan)
return a
Then
nans([3,4])
将输出
array([[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN]])
我在一个邮件列表线程中找到了这个代码。
只是一个警告,使用np.empty()初始化而不随后编辑值可能会导致(内存分配?)问题:
arr1 = np.empty(96)
arr2 = np.empty(96)
print(arr1)
print(arr2)
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 1. 1.
# 1. 1. 2. 2. 2. 2. nan nan nan nan nan nan nan nan 0. 0. 0. 0.
# 0. 0. 0. 0. nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
#
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 1. 1.
# 1. 1. 2. 2. 2. 2. nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
在数组中初始化的浮点数在我的脚本中的其他地方使用,但与变量arr1或arr2根本没有关联。令人毛骨悚然的。
来自用户@JHBonarius的回答解决了这个问题:
arr = np.tile(np.nan, 96)
print(arr)
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
另一种替代方法是numpy.broadcast_to(val,n),它在常量时间内返回,与大小无关,也是内存效率最高的(它返回重复元素的视图)。需要注意的是返回值是只读的。
下面是使用与Nico Schlömer的答案相同的基准测试提出的所有其他方法的性能比较。
>>> width = 2
>>> height = 3
>>> r = np.full((width, height, 9), np.nan)
>>> print(r)
array([[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan]],
[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan]]])
>>> r.shape
(2, 3, 9)
这里还没有提到的另一种可能性是使用NumPy平铺:
a = numpy.tile(numpy.nan, (3, 3))
也给了
array([[ NaN, NaN, NaN],
[ NaN, NaN, NaN],
[ NaN, NaN, NaN]])
我不知道速度比较。