我有以下代码:

r = numpy.zeros(shape = (width, height, 9))

它创建了一个宽x高x 9的矩阵,全是0。相反,我想知道是否有一个函数或方法,以一种简单的方式将它们初始化为nan。


当前回答

另一种选择是使用numpy。full, NumPy 1.8+中可用的选项

a = np.full([height, width, 9], np.nan)

这是非常灵活的,你可以用任何你想要的数字来填充它。

其他回答

如前所述,numpy.empty()是可行的方法。然而,对于对象,fill()可能并不完全像你想象的那样:

In[36]: a = numpy.empty(5,dtype=object)
In[37]: a.fill([])
In[38]: a
Out[38]: array([[], [], [], [], []], dtype=object)
In[39]: a[0].append(4)
In[40]: a
Out[40]: array([[4], [4], [4], [4], [4]], dtype=object)

一种方法可以是:

In[41]: a = numpy.empty(5,dtype=object)
In[42]: a[:]= [ [] for x in range(5)]
In[43]: a[0].append(4)
In[44]: a
Out[44]: array([[4], [], [], [], []], dtype=object)

另一种选择是使用numpy。full, NumPy 1.8+中可用的选项

a = np.full([height, width, 9], np.nan)

这是非常灵活的,你可以用任何你想要的数字来填充它。

>>> width = 2
>>> height = 3

>>> r = np.full((width, height, 9), np.nan)

>>> print(r)

array([[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan]],

       [[nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan]]])

>>> r.shape
(2, 3, 9)

我比较了建议的替代方案的速度,发现对于足够大的向量/矩阵来填充,除了val * ones和array(n * [val])之外的所有替代方案都同样快。


代码重现情节:

import numpy
import perfplot

val = 42.0


def fill(n):
    a = numpy.empty(n)
    a.fill(val)
    return a


def colon(n):
    a = numpy.empty(n)
    a[:] = val
    return a


def full(n):
    return numpy.full(n, val)


def ones_times(n):
    return val * numpy.ones(n)


def list(n):
    return numpy.array(n * [val])


b = perfplot.bench(
    setup=lambda n: n,
    kernels=[fill, colon, full, ones_times, list],
    n_range=[2 ** k for k in range(20)],
    xlabel="len(a)",
)
b.save("out.png")

你熟悉numpy.nan吗?

你可以创建你自己的方法,比如:

def nans(shape, dtype=float):
    a = numpy.empty(shape, dtype)
    a.fill(numpy.nan)
    return a

Then

nans([3,4])

将输出

array([[ NaN,  NaN,  NaN,  NaN],
       [ NaN,  NaN,  NaN,  NaN],
       [ NaN,  NaN,  NaN,  NaN]])

我在一个邮件列表线程中找到了这个代码。