我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?


当前回答

我更喜欢用Plotly,因为它的图表更具交互性,也更容易理解。可以使用下面的代码片段。

import plotly.express as px

def plotly_corr_plot(df,w,h):
    fig = px.imshow(df.corr())
    fig.update_layout(
        autosize=False,
        width=w,
        height=h,)
    fig.show()

其他回答

试试这个函数,它也会显示相关矩阵的变量名:

def plot_corr(df,size=10):
    """Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot
    """

    corr = df.corr()
    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns)
    plt.yticks(range(len(corr.columns)), corr.columns)

你可以通过绘制海洋出生的热图或熊猫的散射矩阵来观察特征之间的关系。

散射矩阵:

pd.scatter_matrix(dataframe, alpha = 0.3, figsize = (14,8), diagonal = 'kde');

如果你想可视化每个特征的偏度,也可以使用海运配对图。

sns.pairplot(dataframe)

党Heatmap:

import seaborn as sns

f, ax = pl.subplots(figsize=(10, 8))
corr = dataframe.corr()
sns.heatmap(corr,
    cmap=sns.diverging_palette(220, 10, as_cmap=True),
    vmin=-1.0, vmax=1.0,
    square=True, ax=ax)

输出将是特征的相关映射。参见下面的例子。

杂货店和洗涤剂之间的相关性很高。类似的:

高相关性产品:

杂货和洗涤剂。

相关性中等的产品:

牛奶和杂货 牛奶和洗涤剂。纸

低相关性产品:

牛奶和熟食 冷冻和新鲜。 冷冻熟食店。

从配对图中:你可以从配对图或散射矩阵中观察到相同的一组关系。但从这些可以判断数据是否正态分布。

注:上图为取自数据的同一张图,用于绘制热图。

可以使用matplotlib中的imshow()方法

import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('ggplot')

plt.imshow(X.corr(), cmap=plt.cm.Reds, interpolation='nearest')
plt.colorbar()
tick_marks = [i for i in range(len(X.columns))]
plt.xticks(tick_marks, X.columns, rotation='vertical')
plt.yticks(tick_marks, X.columns)
plt.show()

我认为有很多好的答案,但我把这个答案添加给那些需要处理特定列和显示不同情节的人。

import numpy as np
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

rs = np.random.RandomState(0)
df = pd.DataFrame(rs.rand(18, 18))
df= df.iloc[: , [3,4,5,6,7,8,9,10,11,12,13,14,17]].copy()
corr = df.corr()
plt.figure(figsize=(11,8))
sns.heatmap(corr, cmap="Greens",annot=True)
plt.show()

令人惊讶的是,没有人提到功能更强、交互性更强、更容易使用的替代品。

A)你可以用plotly:

只要两行,你就得到: 互动, 光滑的规模, 颜色基于整个数据框架,而不是单个列, 轴上的列名和行索引, 放大, 平移, 内置一键保存为PNG格式的功能, 自动伸缩, 比较悬停, 气泡显示数值,热图看起来仍然很好,你可以看到 价值观:

import plotly.express as px
fig = px.imshow(df.corr())
fig.show()

B)你也可以使用Bokeh:

所有相同的功能,只是有点麻烦。但如果你不想选择剧情,仍然想要所有这些东西,这仍然是值得的:

from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource, LinearColorMapper
from bokeh.transform import transform
output_notebook()
colors = ['#d7191c', '#fdae61', '#ffffbf', '#a6d96a', '#1a9641']
TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom"
data = df.corr().stack().rename("value").reset_index()
p = figure(x_range=list(df.columns), y_range=list(df.index), tools=TOOLS, toolbar_location='below',
           tooltips=[('Row, Column', '@level_0 x @level_1'), ('value', '@value')], height = 500, width = 500)

p.rect(x="level_1", y="level_0", width=1, height=1,
       source=data,
       fill_color={'field': 'value', 'transform': LinearColorMapper(palette=colors, low=data.value.min(), high=data.value.max())},
       line_color=None)
color_bar = ColorBar(color_mapper=LinearColorMapper(palette=colors, low=data.value.min(), high=data.value.max()), major_label_text_font_size="7px",
                     ticker=BasicTicker(desired_num_ticks=len(colors)),
                     formatter=PrintfTickFormatter(format="%f"),
                     label_standoff=6, border_line_color=None, location=(0, 0))
p.add_layout(color_bar, 'right')

show(p)