我需要合并多个字典,这是我有例如:

dict1 = {1:{"a":{A}}, 2:{"b":{B}}}

dict2 = {2:{"c":{C}}, 3:{"d":{D}}}

A、B、C和D是树的叶子,比如{"info1":"value", "info2":"value2"}

字典的级别(深度)未知,可能是{2:{"c":{"z":{"y":{c}}}}}

在我的例子中,它表示一个目录/文件结构,节点是文档,叶子是文件。

我想将它们合并得到:

 dict3 = {1:{"a":{A}}, 2:{"b":{B},"c":{C}}, 3:{"d":{D}}}

我不确定如何用Python轻松做到这一点。


当前回答

这里我有另一个稍微不同的解决方案:

def deepMerge(d1, d2, inconflict = lambda v1,v2 : v2) :
''' merge d2 into d1. using inconflict function to resolve the leaf conflicts '''
    for k in d2:
        if k in d1 : 
            if isinstance(d1[k], dict) and isinstance(d2[k], dict) :
                deepMerge(d1[k], d2[k], inconflict)
            elif d1[k] != d2[k] :
                d1[k] = inconflict(d1[k], d2[k])
        else :
            d1[k] = d2[k]
    return d1

默认情况下,它解决冲突,支持来自第二个字典的值,但您可以很容易地覆盖这一点,使用一些巫术,您甚至可以抛出异常。:)。

其他回答

基于@andrew cooke。这个版本处理字典的嵌套列表,还允许选项更新值

def merge(a, b, path=None, update=True):
    "http://stackoverflow.com/questions/7204805/python-dictionaries-of-dictionaries-merge"
    "merges b into a"
    if path is None: path = []
    for key in b:
        if key in a:
            if isinstance(a[key], dict) and isinstance(b[key], dict):
                merge(a[key], b[key], path + [str(key)])
            elif a[key] == b[key]:
                pass # same leaf value
            elif isinstance(a[key], list) and isinstance(b[key], list):
                for idx, val in enumerate(b[key]):
                    a[key][idx] = merge(a[key][idx], b[key][idx], path + [str(key), str(idx)], update=update)
            elif update:
                a[key] = b[key]
            else:
                raise Exception('Conflict at %s' % '.'.join(path + [str(key)]))
        else:
            a[key] = b[key]
    return a

我能想到的最简单的方法是:

#!/usr/bin/python

from copy import deepcopy
def dict_merge(a, b):
    if not isinstance(b, dict):
        return b
    result = deepcopy(a)
    for k, v in b.iteritems():
        if k in result and isinstance(result[k], dict):
                result[k] = dict_merge(result[k], v)
        else:
            result[k] = deepcopy(v)
    return result

a = {1:{"a":'A'}, 2:{"b":'B'}}
b = {2:{"c":'C'}, 3:{"d":'D'}}

print dict_merge(a,b)

输出:

{1: {'a': 'A'}, 2: {'c': 'C', 'b': 'B'}, 3: {'d': 'D'}}

正如在许多其他答案中提到的,递归算法在这里最有意义。一般来说,在使用递归时,最好创建新值,而不是试图修改任何输入数据结构。

我们需要定义在每个合并步骤中发生的事情。如果两个输入都是字典,这很简单:我们从每一边复制唯一键,然后递归合并重复键的值。导致问题的是基本情况。如果我们拿出一个单独的函数,逻辑会更容易理解。作为占位符,我们可以将这两个值包装在一个元组中:

def merge_leaves(x, y):
    return (x, y)

现在我们的逻辑核心是这样的:

def merge(x, y):
    if not(isinstance(x, dict) and isinstance(y, dict)):
        return merge_leaves(x, y)
    x_keys, y_keys = x.keys(), y.keys()
    result = { k: merge(x[k], y[k]) for k in x_keys & y_keys }
    result.update({k: x[k] for k in x_keys - y_keys})
    result.update({k: y[k] for k in y_keys - x_keys})
    return result

让我们来测试一下:

>>> x = {'a': {'b': 'c', 'd': 'e'}, 'f': 1, 'g': {'h', 'i'}, 'j': None}
>>> y = {'a': {'d': 'e', 'h': 'i'}, 'f': {'b': 'c'}, 'g': 1, 'k': None}
>>> merge(x, y)
{'f': (1, {'b': 'c'}), 'g': ({'h', 'i'}, 1), 'a': {'d': ('e', 'e'), 'b': 'c', 'h': 'i'}, 'j': None, 'k': None}
>>> x # The originals are unmodified.
{'a': {'b': 'c', 'd': 'e'}, 'f': 1, 'g': {'h', 'i'}, 'j': None}
>>> y
{'a': {'d': 'e', 'h': 'i'}, 'f': {'b': 'c'}, 'g': 1, 'k': None}

我们可以很容易地修改叶子归并规则,例如:

def merge_leaves(x, y):
    try:
        return x + y
    except TypeError:
        return Ellipsis

并观察效果:

>>> merge(x, y)
{'f': Ellipsis, 'g': Ellipsis, 'a': {'d': 'ee', 'b': 'c', 'h': 'i'}, 'j': None, 'k': None}

我们还可以通过使用第三方库来根据输入的类型进行分派来潜在地清理这个问题。例如,使用multidispatch,我们可以这样做:

@dispatch(dict, dict)
def merge(x, y):
    x_keys, y_keys = x.keys(), y.keys()
    result = { k: merge(x[k], y[k]) for k in x_keys & y_keys }
    result.update({k: x[k] for k in x_keys - y_keys})
    result.update({k: y[k] for k in y_keys - x_keys})
    return result

@dispatch(str, str)
def merge(x, y):
    return x + y

@dispatch(tuple, tuple)
def merge(x, y):
    return x + y

@dispatch(list, list)
def merge(x, y):
    return x + y

@dispatch(int, int):
def merge(x, y):
    raise ValueError("integer value conflict")

@dispatch(object, object):
    return (x, y)

这允许我们在不编写自己的类型检查的情况下处理叶类型特殊情况的各种组合,并在主递归函数中替换类型检查。

概述

下面的方法将字典的深度合并问题细分为:

使用A的参数化浅归并函数merge(f)(A,b) 函数f归并两个字典a和b 与归并一起使用的递归归并函数f


实现

合并两个(非嵌套的)字典的函数可以用很多种方式编写。我个人喜欢

def merge(f):
    def merge(a,b): 
        keys = a.keys() | b.keys()
        return {key:f(a.get(key), b.get(key)) for key in keys}
    return merge

定义一个合适的递归归并函数f的一个好方法是使用multidispatch,它允许定义函数根据参数的类型沿着不同的路径求值。

from multipledispatch import dispatch

#for anything that is not a dict return
@dispatch(object, object)
def f(a, b):
    return b if b is not None else a

#for dicts recurse 
@dispatch(dict, dict)
def f(a,b):
    return merge(f)(a,b)

例子

要合并两个嵌套字典,只需使用merge(f),例如:

dict1 = {1:{"a":"A"},2:{"b":"B"}}
dict2 = {2:{"c":"C"},3:{"d":"D"}}
merge(f)(dict1, dict2)
#returns {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}, 3: {'d': 'D'}} 

注:

这种方法的优点是:

该函数由较小的函数构建而成,每个函数只做一件事 这使得代码更容易推理和测试 这种行为不是硬编码的,但可以根据需要进行更改和扩展,从而提高代码重用(参见下面的示例)。


定制

一些答案还考虑了包含列表的字典,例如其他(可能嵌套的)字典。在这种情况下,可能需要映射列表并根据位置合并它们。这可以通过在归并函数f中添加另一个定义来实现:

import itertools
@dispatch(list, list)
def f(a,b):
    return [merge(f)(*arg) for arg in itertools.zip_longest(a, b)]

我一直在测试你的解决方案,并决定在我的项目中使用这个:

def mergedicts(dict1, dict2, conflict, no_conflict):
    for k in set(dict1.keys()).union(dict2.keys()):
        if k in dict1 and k in dict2:
            yield (k, conflict(dict1[k], dict2[k]))
        elif k in dict1:
            yield (k, no_conflict(dict1[k]))
        else:
            yield (k, no_conflict(dict2[k]))

dict1 = {1:{"a":"A"}, 2:{"b":"B"}}
dict2 = {2:{"c":"C"}, 3:{"d":"D"}}

#this helper function allows for recursion and the use of reduce
def f2(x, y):
    return dict(mergedicts(x, y, f2, lambda x: x))

print dict(mergedicts(dict1, dict2, f2, lambda x: x))
print dict(reduce(f2, [dict1, dict2]))

将函数作为参数传递是将jterrace解决方案扩展为所有其他递归解决方案的关键。