我需要合并多个字典,这是我有例如:

dict1 = {1:{"a":{A}}, 2:{"b":{B}}}

dict2 = {2:{"c":{C}}, 3:{"d":{D}}}

A、B、C和D是树的叶子,比如{"info1":"value", "info2":"value2"}

字典的级别(深度)未知,可能是{2:{"c":{"z":{"y":{c}}}}}

在我的例子中,它表示一个目录/文件结构,节点是文档,叶子是文件。

我想将它们合并得到:

 dict3 = {1:{"a":{A}}, 2:{"b":{B},"c":{C}}, 3:{"d":{D}}}

我不确定如何用Python轻松做到这一点。


当前回答

我有一个迭代的解决方案-工作得更好的大字典&很多(例如jsons等):

import collections


def merge_dict_with_subdicts(dict1: dict, dict2: dict) -> dict:
    """
    similar behaviour to builtin dict.update - but knows how to handle nested dicts
    """
    q = collections.deque([(dict1, dict2)])
    while len(q) > 0:
        d1, d2 = q.pop()
        for k, v in d2.items():
            if k in d1 and isinstance(d1[k], dict) and isinstance(v, dict):
                q.append((d1[k], v))
            else:
                d1[k] = v

    return dict1

注意,这将使用d2中的值来覆盖d1,以防它们都不是字典。(与python的dict.update()相同)

一些测试:

def test_deep_update():
    d = dict()
    merge_dict_with_subdicts(d, {"a": 4})
    assert d == {"a": 4}

    new_dict = {
        "b": {
            "c": {
                "d": 6
            }
        }
    }
    merge_dict_with_subdicts(d, new_dict)
    assert d == {
        "a": 4,
        "b": {
            "c": {
                "d": 6
            }
        }
    }

    new_dict = {
        "a": 3,
        "b": {
            "f": 7
        }
    }
    merge_dict_with_subdicts(d, new_dict)
    assert d == {
        "a": 3,
        "b": {
            "c": {
                "d": 6
            },
            "f": 7
        }
    }

    # test a case where one of the dicts has dict as value and the other has something else
    new_dict = {
        'a': {
            'b': 4
        }
    }
    merge_dict_with_subdicts(d, new_dict)
    assert d['a']['b'] == 4

我已经测试了大约1200个字典——这种方法花了0.4秒,而递归的解决方案花了2.5秒。

其他回答

如果有人想要另一种方法来解决这个问题,这是我的解决方案。

优点:简洁、声明性和函数式风格(递归,没有突变)。

潜在缺点:这可能不是你想要的合并。查阅文档字符串以了解语义。

def deep_merge(a, b):
    """
    Merge two values, with `b` taking precedence over `a`.

    Semantics:
    - If either `a` or `b` is not a dictionary, `a` will be returned only if
      `b` is `None`. Otherwise `b` will be returned.
    - If both values are dictionaries, they are merged as follows:
        * Each key that is found only in `a` or only in `b` will be included in
          the output collection with its value intact.
        * For any key in common between `a` and `b`, the corresponding values
          will be merged with the same semantics.
    """
    if not isinstance(a, dict) or not isinstance(b, dict):
        return a if b is None else b
    else:
        # If we're here, both a and b must be dictionaries or subtypes thereof.

        # Compute set of all keys in both dictionaries.
        keys = set(a.keys()) | set(b.keys())

        # Build output dictionary, merging recursively values with common keys,
        # where `None` is used to mean the absence of a value.
        return {
            key: deep_merge(a.get(key), b.get(key))
            for key in keys
        }

嘿,我也有同样的问题,但我想出了一个解决方案,我会把它贴在这里,以防它对其他人也有用,基本上合并嵌套字典和添加值,对我来说,我需要计算一些概率,所以这一个工作得很好:

#used to copy a nested dict to a nested dict
def deepupdate(target, src):
    for k, v in src.items():
        if k in target:
            for k2, v2 in src[k].items():
                if k2 in target[k]:
                    target[k][k2]+=v2
                else:
                    target[k][k2] = v2
        else:
            target[k] = copy.deepcopy(v)

通过使用上述方法,我们可以合并:

目标={6 6:{“63”:1},“63,4:{4 4:1},4,4:{“4 3”:1},“63”:{63,4:1}}

src ={5 4:{4 4: 1}, 5、5:{“5、4”:1},4,4:{“4 3”:1}}

这将变成: {', 5 ':{“5、4”:1},“5、4”:{4 4:1},“6 6”:{“63”:1},“63,4:{4 4:1},4,4:{“4 3”:2},“63”:{63,4:1}}

还要注意这里的变化:

目标={6 6:{“63”:1},“63”:{63,4:1},4,4:{“4 3”:1},“63,4:{4 4:1}}

src ={5 4:{4 4: 1},“4 3”:{“3、4”:1},4,4:{“4、9”:1},3、4:{4 4:1},5、5:{“5、4”:1}}

merge =可不,‘五,四’:可不,‘4、4’:一个出于美观,‘4、三’:可不,‘3、4”:一个有关联,“6、63”:可不,‘63倍或四’:一个出于美观,‘5、5:可不,' 5、4”:一个有关联,“6、6”:可不,‘6、63’:一个出于美观,‘3,4‘:可不,‘四,四’:一个出于美观,‘63倍或四’一‘::可不,‘四,四出于美观,‘4,4:可不,’‘四,三’:一,‘4 9,‘:一个出于美观出于美观。

别忘了还添加导入copy:

import copy

这个问题的一个问题是字典的值可以是任意复杂的数据块。基于这些和其他答案,我得出了以下代码:

class YamlReaderError(Exception):
    pass

def data_merge(a, b):
    """merges b into a and return merged result

    NOTE: tuples and arbitrary objects are not handled as it is totally ambiguous what should happen"""
    key = None
    # ## debug output
    # sys.stderr.write("DEBUG: %s to %s\n" %(b,a))
    try:
        if a is None or isinstance(a, str) or isinstance(a, unicode) or isinstance(a, int) or isinstance(a, long) or isinstance(a, float):
            # border case for first run or if a is a primitive
            a = b
        elif isinstance(a, list):
            # lists can be only appended
            if isinstance(b, list):
                # merge lists
                a.extend(b)
            else:
                # append to list
                a.append(b)
        elif isinstance(a, dict):
            # dicts must be merged
            if isinstance(b, dict):
                for key in b:
                    if key in a:
                        a[key] = data_merge(a[key], b[key])
                    else:
                        a[key] = b[key]
            else:
                raise YamlReaderError('Cannot merge non-dict "%s" into dict "%s"' % (b, a))
        else:
            raise YamlReaderError('NOT IMPLEMENTED "%s" into "%s"' % (b, a))
    except TypeError, e:
        raise YamlReaderError('TypeError "%s" in key "%s" when merging "%s" into "%s"' % (e, key, b, a))
    return a

我的用例是合并YAML文件,其中我只需要处理可能的数据类型的子集。因此我可以忽略元组和其他对象。对我来说,合理的合并逻辑意味着

取代标量 添加列表 通过添加缺失键和更新现有键来合并字典

其他任何事情和不可预见的事情都会导致错误。

换个答案怎么样?!?这也避免了突变/副作用:

def merge(dict1, dict2):
    output = {}

    # adds keys from `dict1` if they do not exist in `dict2` and vice-versa
    intersection = {**dict2, **dict1}

    for k_intersect, v_intersect in intersection.items():
        if k_intersect not in dict1:
            v_dict2 = dict2[k_intersect]
            output[k_intersect] = v_dict2

        elif k_intersect not in dict2:
            output[k_intersect] = v_intersect

        elif isinstance(v_intersect, dict):
            v_dict2 = dict2[k_intersect]
            output[k_intersect] = merge(v_intersect, v_dict2)

        else:
            output[k_intersect] = v_intersect

    return output

dict1 = {1:{"a":{"A"}}, 2:{"b":{"B"}}}
dict2 = {2:{"c":{"C"}}, 3:{"d":{"D"}}}
dict3 = {1:{"a":{"A"}}, 2:{"b":{"B"},"c":{"C"}}, 3:{"d":{"D"}}}

assert dict3 == merge(dict1, dict2)

我有两个字典(a和b),每个字典可以包含任意数量的嵌套字典。我想递归地合并它们,b优先于a。

将嵌套字典视为树,我想要的是:

更新a,使b中每个叶结点的每条路径都表示在a中 如果在b的对应路径中找到了叶子,则覆盖a的子树 保持所有b个叶节点都是叶节点的不变式。

现有的答案对我来说有点复杂,有些细节被束之高阁。我将以下内容整合在一起,它们通过了我的数据集的单元测试。

  def merge_map(a, b):
    if not isinstance(a, dict) or not isinstance(b, dict):
      return b

    for key in b.keys():
      a[key] = merge_map(a[key], b[key]) if key in a else b[key]
    return a

示例(为清晰起见,已格式化):

 a = {
    1 : {'a': 'red', 
         'b': {'blue': 'fish', 'yellow': 'bear' },
         'c': { 'orange': 'dog'},
    },
    2 : {'d': 'green'},
    3: 'e'
  }

  b = {
    1 : {'b': 'white'},
    2 : {'d': 'black'},
    3: 'e'
  }


  >>> merge_map(a, b)
  {1: {'a': 'red', 
       'b': 'white',
       'c': {'orange': 'dog'},},
   2: {'d': 'black'},
   3: 'e'}

b中需要维护的路径为:

1 -> 'b' -> 'white' 2 -> 'd' -> 'black' 3 -> 'e'。

A拥有独特且不冲突的路径:

1 -> 'a' -> 'red' 1 -> 'c' -> 'orange' -> 'dog'

所以它们仍然在合并后的映射中表示。