我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
当前回答
对于一个数据帧列表df_list,也可以这样做:
df = df_list[0]
for df_ in df_list[1:]:
df = df.merge(df_, on='join_col_name')
或者如果数据帧在生成器对象中(例如,为了减少内存消耗):
df = next(df_list)
for df_ in df_list:
df = df.merge(df_, on='join_col_name')
其他回答
这是join方法的理想情况
join方法正是为这些类型的情况构建的。你可以加入任意数量的数据框架。调用的DataFrame与传递的DataFrame集合的索引连接。要使用多个dataframe,必须将连接列放在索引中。
代码看起来像这样:
filenames = ['fn1', 'fn2', 'fn3', 'fn4',....]
dfs = [pd.read_csv(filename, index_col=index_col) for filename in filenames)]
dfs[0].join(dfs[1:])
使用@zero的数据,你可以这样做:
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32'])
dfs = [df1, df2, df3]
dfs = [df.set_index('name') for df in dfs]
dfs[0].join(dfs[1:])
attr11 attr12 attr21 attr22 attr31 attr32
name
a 5 9 5 19 15 49
b 4 61 14 16 4 36
c 24 9 4 9 14 9
对于一个数据帧列表df_list,也可以这样做:
df = df_list[0]
for df_ in df_list[1:]:
df = df.merge(df_, on='join_col_name')
或者如果数据帧在生成器对象中(例如,为了减少内存消耗):
df = next(df_list)
for df_ in df_list:
df = df.merge(df_, on='join_col_name')
简单的解决方案:
如果列名相似:
df1.merge(df2,on='col_name').merge(df3,on='col_name')
如果列名不同:
df1.merge(df2,left_on='col_name1', right_on='col_name2').merge(df3,left_on='col_name1', right_on='col_name3').drop(columns=['col_name2', 'col_name3']).rename(columns={'col_name1':'col_name'})
下面是一个合并数据帧字典的方法,同时保持列名与字典同步。如果需要,它还会填充缺失的值:
这是合并数据帧字典的函数
def MergeDfDict(dfDict, onCols, how='outer', naFill=None):
keys = dfDict.keys()
for i in range(len(keys)):
key = keys[i]
df0 = dfDict[key]
cols = list(df0.columns)
valueCols = list(filter(lambda x: x not in (onCols), cols))
df0 = df0[onCols + valueCols]
df0.columns = onCols + [(s + '_' + key) for s in valueCols]
if (i == 0):
outDf = df0
else:
outDf = pd.merge(outDf, df0, how=how, on=onCols)
if (naFill != None):
outDf = outDf.fillna(naFill)
return(outDf)
好的,让我们生成数据并测试:
def GenDf(size):
df = pd.DataFrame({'categ1':np.random.choice(a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True),
'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True),
'col1':np.random.uniform(low=0.0, high=100.0, size=size),
'col2':np.random.uniform(low=0.0, high=100.0, size=size)
})
df = df.sort_values(['categ2', 'categ1', 'col1', 'col2'])
return(df)
size = 5
dfDict = {'US':GenDf(size), 'IN':GenDf(size), 'GER':GenDf(size)}
MergeDfDict(dfDict=dfDict, onCols=['categ1', 'categ2'], how='outer', naFill=0)
0的答案基本上是一个约简运算。如果我有很多数据框架,我会把它们放在一个这样的列表中(通过列表推导或循环或诸如此类的东西生成):
dfs = [df0, df1, df2, ..., dfN]
假设他们有一个共同的列,就像你的例子中的name一样,我会做以下事情:
import functools as ft
df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
这样,您的代码就可以处理您想合并的任何数量的数据框架。