我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
当前回答
0的答案基本上是一个约简运算。如果我有很多数据框架,我会把它们放在一个这样的列表中(通过列表推导或循环或诸如此类的东西生成):
dfs = [df0, df1, df2, ..., dfN]
假设他们有一个共同的列,就像你的例子中的name一样,我会做以下事情:
import functools as ft
df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
这样,您的代码就可以处理您想合并的任何数量的数据框架。
其他回答
简单的解决方案:
如果列名相似:
df1.merge(df2,on='col_name').merge(df3,on='col_name')
如果列名不同:
df1.merge(df2,left_on='col_name1', right_on='col_name2').merge(df3,left_on='col_name1', right_on='col_name3').drop(columns=['col_name2', 'col_name3']).rename(columns={'col_name1':'col_name'})
在python 3.6.3和pandas 0.22.0中,你也可以使用concat,只要你将你想要用于连接的列设置为index:
pd.concat(
objs=(iDF.set_index('name') for iDF in (df1, df2, df3)),
axis=1,
join='inner'
).reset_index()
其中df1, df2和df3定义为John Galt的答案:
import pandas as pd
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12']
)
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22']
)
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32']
)
可以使用.join()函数将三者连接在一起。
假设你有三个数据框架 Df1 df2 df3。 要将这些数据加入到一个数据框架中,你可以:
df = df1.join(df2).join(df3)
这是我发现的完成这项任务最简单的方法。
如果你有3个数据框架,你可以试试这个
# Merge multiple dataframes
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32'])
pd.merge(pd.merge(df1,df2,on='name'),df3,on='name')
或者,正如考兰德提到的
df1.merge(df2,on='name').merge(df3,on='name')
不需要多索引来执行连接操作。 我们只需要正确地设置索引列来执行连接操作(例如哪个命令df.set_index('Name'))
默认情况下,连接操作在索引上执行。 在本例中,只需指定Name列对应于索引。 下面是一个例子
教程可能会有用。
# Simple example where dataframes index are the name on which to perform
# the join operations
import pandas as pd
import numpy as np
name = ['Sophia' ,'Emma' ,'Isabella' ,'Olivia' ,'Ava' ,'Emily' ,'Abigail' ,'Mia']
df1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=name)
df2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=name)
df3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=name)
df = df1.join(df2)
df = df.join(df3)
# If you have a 'Name' column that is not the index of your dataframe,
# one can set this column to be the index
# 1) Create a column 'Name' based on the previous index
df1['Name'] = df1.index
# 1) Select the index from column 'Name'
df1 = df1.set_index('Name')
# If indexes are different, one may have to play with parameter how
gf1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=range(8))
gf2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=range(2,10))
gf3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=range(4,12))
gf = gf1.join(gf2, how='outer')
gf = gf.join(gf3, how='outer')