我有一个熊猫数据框架与一列:

import pandas as pd

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

如何将这列列表分成两列?

预期的结果:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

当前回答

这是另一个使用df的解。Transform和df.set_index:

>>> from operator import itemgetter
>>> df['teams'].transform({'item1': itemgetter(0), 'item2': itemgetter(1)})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

当然可以概括为:

>>> indices = range(len(df['teams'][0]))

>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

这种方法具有提取所需指标的额外好处:

>>> df
                 teams
0  [SF, NYG, XYZ, ABC]
1  [SF, NYG, XYZ, ABC]
2  [SF, NYG, XYZ, ABC]
3  [SF, NYG, XYZ, ABC]
4  [SF, NYG, XYZ, ABC]
5  [SF, NYG, XYZ, ABC]
6  [SF, NYG, XYZ, ABC]

>>> indices = [0, 2]
>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team3
0    SF   XYZ
1    SF   XYZ
2    SF   XYZ
3    SF   XYZ
4    SF   XYZ
5    SF   XYZ
6    SF   XYZ

其他回答

与所提出的解决方案相比,似乎有一种语法更简单的方法,因此更容易记住。我假设这个列在数据框架df中叫做“meta”:

df2 = pd.DataFrame(df['meta'].str.split().values.tolist())

我想推荐一种更有效的python方法。

首先定义DataFrame作为原始post:

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

我的解决方案:

%%timeit
df['team1'], df['team2'] = zip(*list(df['teams'].values))
>> 761 µs ± 8.35 µs per loop

相比之下,获得最多好评的解决方案是:

%%timeit
df[['team1','team2']] = pd.DataFrame(df.teams.tolist(), index=df.index)
df = pd.DataFrame(df['teams'].to_list(), columns=['team1','team2'])
>> 1.31 ms ± 11.2 µs per loop

我的解决方案节省了40%的时间,而且时间短得多。您需要记住的唯一一件事是如何使用zip(*list)解压缩和重塑二维列表。

这是另一个使用df的解。Transform和df.set_index:

>>> from operator import itemgetter
>>> df['teams'].transform({'item1': itemgetter(0), 'item2': itemgetter(1)})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

当然可以概括为:

>>> indices = range(len(df['teams'][0]))

>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

这种方法具有提取所需指标的额外好处:

>>> df
                 teams
0  [SF, NYG, XYZ, ABC]
1  [SF, NYG, XYZ, ABC]
2  [SF, NYG, XYZ, ABC]
3  [SF, NYG, XYZ, ABC]
4  [SF, NYG, XYZ, ABC]
5  [SF, NYG, XYZ, ABC]
6  [SF, NYG, XYZ, ABC]

>>> indices = [0, 2]
>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team3
0    SF   XYZ
1    SF   XYZ
2    SF   XYZ
3    SF   XYZ
4    SF   XYZ
5    SF   XYZ
6    SF   XYZ

以前的解决方案并不适用于我,因为我在我的数据框架中有nan观察。在我的例子中,df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index)产生:

object of type 'float' has no len()

我用一个列表理解来解决这个问题。下面是一个可复制的例子:

import pandas as pd
import numpy as np
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
            ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2.loc[2,'teams'] = np.nan
df2.loc[4,'teams'] = np.nan
df2

输出:

        teams
0   [SF, NYG]
1   [SF, NYG]
2   NaN
3   [SF, NYG]
4   NaN
5   [SF, NYG]
6   [SF, NYG]

df2['team1']=np.nan
df2['team2']=np.nan

用列表推导法求解,

for i in [0,1]:
    df2['team{}'.format(str(i+1))]=[k[i] if isinstance(k,list) else k for k in df2['teams']]

df2

收益率:

    teams   team1   team2
0   [SF, NYG]   SF  NYG
1   [SF, NYG]   SF  NYG
2   NaN        NaN  NaN
3   [SF, NYG]   SF  NYG
4   NaN        NaN  NaN
5   [SF, NYG]   SF  NYG
6   [SF, NYG]   SF  NYG

列表理解

带有列表理解的简单实现(我的最爱)

df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]

输出计时:

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms

输出:

team_1    team_2
0    SF    NYG
1    SF    NYG
2    SF    NYG
3    SF    NYG
4    SF    NYG
5    SF    NYG
6    SF    NYG