df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:
isNumeric = is_numeric(df)
df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:
isNumeric = is_numeric(df)
当前回答
你可以使用没有文档的函数_get_numeric_data()只过滤数字列:
df._get_numeric_data()
例子:
In [32]: data
Out[32]:
A B
0 1 s
1 2 s
2 3 s
3 4 s
In [33]: data._get_numeric_data()
Out[33]:
A
0 1
1 2
2 3
3 4
请注意,这是一个“私有方法”(即,一个实现细节),将来可能会更改或完全删除。请谨慎使用。
其他回答
def is_type(df, baseType):
import numpy as np
import pandas as pd
test = [issubclass(np.dtype(d).type, baseType) for d in df.dtypes]
return pd.DataFrame(data = test, index = df.columns, columns = ["test"])
def is_float(df):
import numpy as np
return is_type(df, np.float)
def is_number(df):
import numpy as np
return is_type(df, np.number)
def is_integer(df):
import numpy as np
return is_type(df, np.integer)
请参阅以下代码:
if(dataset.select_dtypes(include=[np.number]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.number]).describe())
if(dataset.select_dtypes(include=[np.object]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.object]).describe())
通过这种方式,您可以检查值是数值,如float和int还是srting值。第二个if语句用于检查对象引用的字符串值。
你可以使用没有文档的函数_get_numeric_data()只过滤数字列:
df._get_numeric_data()
例子:
In [32]: data
Out[32]:
A B
0 1 s
1 2 s
2 3 s
3 4 s
In [33]: data._get_numeric_data()
Out[33]:
A
0 1
1 2
2 3
3 4
请注意,这是一个“私有方法”(即,一个实现细节),将来可能会更改或完全删除。请谨慎使用。
这是另一个简单的代码,用于在pandas数据帧中查找数字列,
numeric_clmns = df.dtypes[df.dtypes != "object"].index
调整这个答案,你可以做到
df.ix[:,df.applymap(np.isreal).all(axis=0)]
在这里,np.applymap(np.isreal)显示数据帧中的每个单元格是否都是数值,而.axis(all=0)检查列中的所有值是否都为True,并返回一系列可用于索引所需列的布尔值。