df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:

isNumeric = is_numeric(df)

当前回答

下面的代码将返回数据集的数字列的名称列表。

cnames=list(marketing_train.select_dtypes(exclude=['object']).columns)

这里marketing_train是我的数据集,select_dtypes()是使用exclude和include参数选择数据类型的函数,columns用于获取数据集的列名 以上代码的输出如下:

['custAge',
     'campaign',
     'pdays',
     'previous',
     'emp.var.rate',
     'cons.price.idx',
     'cons.conf.idx',
     'euribor3m',
     'nr.employed',
     'pmonths',
     'pastEmail']
    

其他回答

很多贴出来的答案都是低效的。这些答案要么返回/选择原始数据帧的子集(不必要的副本),要么在describe()的情况下执行不必要的计算统计。

要获得数字列名,可以使用pd.api.types的条件列表推导式。is_numeric_dtype功能:

numeric_cols = [col for col in df if pd.api.types.is_numeric_dtype(df[col])]

我不确定这个函数是什么时候引入的。

这是另一个简单的代码,用于在pandas数据帧中查找数字列,

numeric_clmns = df.dtypes[df.dtypes != "object"].index 
df.select_dtypes(exclude = ['object'])

更新:

df.select_dtypes(include= np.number)

或者是熊猫的新版本

 df.select_dtypes('number')

请参阅以下代码:

if(dataset.select_dtypes(include=[np.number]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.number]).describe())
if(dataset.select_dtypes(include=[np.object]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.object]).describe())

通过这种方式,您可以检查值是数值,如float和int还是srting值。第二个if语句用于检查对象引用的字符串值。

调整这个答案,你可以做到

df.ix[:,df.applymap(np.isreal).all(axis=0)]

在这里,np.applymap(np.isreal)显示数据帧中的每个单元格是否都是数值,而.axis(all=0)检查列中的所有值是否都为True,并返回一系列可用于索引所需列的布尔值。