考虑到:
>>> d = {'a': 1, 'b': 2}
下面哪个选项是检查a是否在d中的最好方法?
>>> 'a' in d
True
>>> d.has_key('a')
True
考虑到:
>>> d = {'a': 1, 'b': 2}
下面哪个选项是检查a是否在d中的最好方法?
>>> 'a' in d
True
>>> d.has_key('a')
True
当前回答
Has_key是一个字典方法,但in将适用于任何集合,甚至当__contains__缺失时,in将使用任何其他方法迭代集合以找出答案。
其他回答
Has_key是一个字典方法,但in将适用于任何集合,甚至当__contains__缺失时,in将使用任何其他方法迭代集合以找出答案。
dict.has_key()的解决方案已弃用,请使用'in'——sublime文本编辑器3
这里我举了一个名为“ages”的字典的例子
ages = {}
# Add a couple of names to the dictionary
ages['Sue'] = 23
ages['Peter'] = 19
ages['Andrew'] = 78
ages['Karren'] = 45
# use of 'in' in if condition instead of function_name.has_key(key-name).
if 'Sue' in ages:
print "Sue is in the dictionary. She is", ages['Sue'], "years old"
else:
print "Sue is not in the dictionary"
使用dict.has_key()当(且仅当)你的代码需要在Python 2.3之前的版本中可运行时(当dict引入key时)。
In hands-down,不仅在优雅(不被弃用;-)上,而且在性能上,例如:
$ python -mtimeit -s'd=dict.fromkeys(range(99))' '12 in d'
10000000 loops, best of 3: 0.0983 usec per loop
$ python -mtimeit -s'd=dict.fromkeys(range(99))' 'd.has_key(12)'
1000000 loops, best of 3: 0.21 usec per loop
虽然下面的观察并不总是正确的,但您会注意到,通常在Python中,更快的解决方案更优雅和Python化;这就是为什么-mtimeit是如此有用——它不仅仅是节省100纳秒!-)
用Adam Parkin的评论扩展Alex Martelli的性能测试…
$ python3.5 -mtimeit -s'd=dict.fromkeys(range( 99))' 'd.has_key(12)'
Traceback (most recent call last):
File "/usr/local/Cellar/python3/3.5.2_3/Frameworks/Python.framework/Versions/3.5/lib/python3.5/timeit.py", line 301, in main
x = t.timeit(number)
File "/usr/local/Cellar/python3/3.5.2_3/Frameworks/Python.framework/Versions/3.5/lib/python3.5/timeit.py", line 178, in timeit
timing = self.inner(it, self.timer)
File "<timeit-src>", line 6, in inner
d.has_key(12)
AttributeError: 'dict' object has no attribute 'has_key'
$ python2.7 -mtimeit -s'd=dict.fromkeys(range( 99))' 'd.has_key(12)'
10000000 loops, best of 3: 0.0872 usec per loop
$ python2.7 -mtimeit -s'd=dict.fromkeys(range(1999))' 'd.has_key(12)'
10000000 loops, best of 3: 0.0858 usec per loop
$ python3.5 -mtimeit -s'd=dict.fromkeys(range( 99))' '12 in d'
10000000 loops, best of 3: 0.031 usec per loop
$ python3.5 -mtimeit -s'd=dict.fromkeys(range(1999))' '12 in d'
10000000 loops, best of 3: 0.033 usec per loop
$ python3.5 -mtimeit -s'd=dict.fromkeys(range( 99))' '12 in d.keys()'
10000000 loops, best of 3: 0.115 usec per loop
$ python3.5 -mtimeit -s'd=dict.fromkeys(range(1999))' '12 in d.keys()'
10000000 loops, best of 3: 0.117 usec per loop