假设我想计算每个组中不同值的比例。例如,使用mtcars数据,我如何计算齿轮数的相对频率由am(自动/手动)与dplyr一步走?

library(dplyr)
data(mtcars)
mtcars <- tbl_df(mtcars)

# count frequency
mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n())

# am gear  n
#  0    3 15 
#  0    4  4 
#  1    4  8  
#  1    5  5 

我想达到的目标:

am gear  n rel.freq
 0    3 15      0.7894737
 0    4  4      0.2105263
 1    4  8      0.6153846
 1    5  5      0.3846154

当前回答

@Henrik's的可用性更好,因为这将使列字符,不再是数字,但符合您的要求…

mtcars %>%
  group_by (am, gear) %>%
  summarise (n=n()) %>%
  mutate(rel.freq = paste0(round(100 * n/sum(n), 0), "%"))

##   am gear  n rel.freq
## 1  0    3 15      79%
## 2  0    4  4      21%
## 3  1    4  8      62%
## 4  1    5  5      38%

因为这是太空人要求的:-)

as.rel_freq <- function(x, rel_freq_col = "rel.freq", ...) {
    class(x) <- c("rel_freq", class(x))
    attributes(x)[["rel_freq_col"]] <- rel_freq_col
    x
}

print.rel_freq <- function(x, ...) {
    freq_col <- attributes(x)[["rel_freq_col"]]
    x[[freq_col]] <- paste0(round(100 * x[[freq_col]], 0), "%")   
    class(x) <- class(x)[!class(x)%in% "rel_freq"]
    print(x)
}

mtcars %>%
  group_by (am, gear) %>%
  summarise (n=n()) %>%
  mutate(rel.freq = n/sum(n)) %>%
  as.rel_freq()

## Source: local data frame [4 x 4]
## Groups: am
## 
##   am gear  n rel.freq
## 1  0    3 15      79%
## 2  0    4  4      21%
## 3  1    4  8      62%
## 4  1    5  5      38%

其他回答

你可以使用count()函数,但是根据dplyr版本的不同,它有不同的行为:

Dplyr 0.7.1:返回一个未分组的表:您需要通过am重新分组 Dplyr < 0.7.1:返回一个分组表,因此不需要再次分组,尽管您可能希望为以后的操作取消group()

抑郁症是0.7.1

mtcars %>%
  count(am, gear) %>%
  group_by(am) %>%
  mutate(freq = n / sum(n))

德普林斯

mtcars %>%
  count(am, gear) %>%
  mutate(freq = n / sum(n))

这将生成一个分组表,如果您希望将其用于进一步分析,使用ungroup()删除分组属性可能会很有用。

@Henrik's的可用性更好,因为这将使列字符,不再是数字,但符合您的要求…

mtcars %>%
  group_by (am, gear) %>%
  summarise (n=n()) %>%
  mutate(rel.freq = paste0(round(100 * n/sum(n), 0), "%"))

##   am gear  n rel.freq
## 1  0    3 15      79%
## 2  0    4  4      21%
## 3  1    4  8      62%
## 4  1    5  5      38%

因为这是太空人要求的:-)

as.rel_freq <- function(x, rel_freq_col = "rel.freq", ...) {
    class(x) <- c("rel_freq", class(x))
    attributes(x)[["rel_freq_col"]] <- rel_freq_col
    x
}

print.rel_freq <- function(x, ...) {
    freq_col <- attributes(x)[["rel_freq_col"]]
    x[[freq_col]] <- paste0(round(100 * x[[freq_col]], 0), "%")   
    class(x) <- class(x)[!class(x)%in% "rel_freq"]
    print(x)
}

mtcars %>%
  group_by (am, gear) %>%
  summarise (n=n()) %>%
  mutate(rel.freq = n/sum(n)) %>%
  as.rel_freq()

## Source: local data frame [4 x 4]
## Groups: am
## 
##   am gear  n rel.freq
## 1  0    3 15      79%
## 2  0    4  4      21%
## 3  1    4  8      62%
## 4  1    5  5      38%

下面是在dplyr 0.7.1上实现Henrik解决方案的通用函数。

freq_table <- function(x, 
                       group_var, 
                       prop_var) {
  group_var <- enquo(group_var)
  prop_var  <- enquo(prop_var)
  x %>% 
    group_by(!!group_var, !!prop_var) %>% 
    summarise(n = n()) %>% 
    mutate(freq = n /sum(n)) %>% 
    ungroup
}

另外,尝试add_count()(以避开烦人的group_by .groups)。

mtcars %>% 
  count(am, gear) %>% 
  add_count(am, wt = n, name = "nn") %>% 
  mutate(proportion = n / nn)

尽管有很多答案,但还有一种方法使用prop。与dplyr或data.table结合使用。

library(dplyr)

mtcars %>%
  group_by(am, gear) %>% 
  tally() %>% 
  mutate(freq = prop.table(n))

#> # A tibble: 4 × 4
#> # Groups:   am [2]
#>      am  gear     n  freq
#>   <dbl> <dbl> <int> <dbl>
#> 1     0     3    15 0.789
#> 2     0     4     4 0.211
#> 3     1     4     8 0.615
#> 4     1     5     5 0.385
library(data.table)
cars_dt <- as.data.table(mtcars)
cars_dt[, .(n = .N), keyby = .(am, gear)][, freq := prop.table(n), by = "am"][]

#>    am gear  n      freq
#> 1:  0    3 15 0.7894737
#> 2:  0    4  4 0.2105263
#> 3:  1    4  8 0.6153846
#> 4:  1    5  5 0.3846154

使用reprex v2.0.2创建于2022-10-22