假设我想计算每个组中不同值的比例。例如,使用mtcars数据,我如何计算齿轮数的相对频率由am(自动/手动)与dplyr一步走?
library(dplyr)
data(mtcars)
mtcars <- tbl_df(mtcars)
# count frequency
mtcars %>%
group_by(am, gear) %>%
summarise(n = n())
# am gear n
# 0 3 15
# 0 4 4
# 1 4 8
# 1 5 5
我想达到的目标:
am gear n rel.freq
0 3 15 0.7894737
0 4 4 0.2105263
1 4 8 0.6153846
1 5 5 0.3846154
试试这个:
mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
mutate(freq = n / sum(n))
# am gear n freq
# 1 0 3 15 0.7894737
# 2 0 4 4 0.2105263
# 3 1 4 8 0.6153846
# 4 1 5 5 0.3846154
来自dplyr的小插图:
当您按多个变量分组时,每个摘要都会剥离分组的一个层次。这使得逐步上卷数据集变得很容易。
因此,在总结之后,去掉group_by中指定的最后一个分组变量‘gear’。在突变步骤中,数据由剩余的分组变量“am”分组。您可以在每个步骤中用组检查分组。
剥离的结果当然取决于group_by调用中分组变量的顺序。您可能希望执行后续的group_by(am),以使代码更显式。
关于舍入和修饰,请参考@Tyler Rinker的精彩回答。
@Henrik's的可用性更好,因为这将使列字符,不再是数字,但符合您的要求…
mtcars %>%
group_by (am, gear) %>%
summarise (n=n()) %>%
mutate(rel.freq = paste0(round(100 * n/sum(n), 0), "%"))
## am gear n rel.freq
## 1 0 3 15 79%
## 2 0 4 4 21%
## 3 1 4 8 62%
## 4 1 5 5 38%
因为这是太空人要求的:-)
as.rel_freq <- function(x, rel_freq_col = "rel.freq", ...) {
class(x) <- c("rel_freq", class(x))
attributes(x)[["rel_freq_col"]] <- rel_freq_col
x
}
print.rel_freq <- function(x, ...) {
freq_col <- attributes(x)[["rel_freq_col"]]
x[[freq_col]] <- paste0(round(100 * x[[freq_col]], 0), "%")
class(x) <- class(x)[!class(x)%in% "rel_freq"]
print(x)
}
mtcars %>%
group_by (am, gear) %>%
summarise (n=n()) %>%
mutate(rel.freq = n/sum(n)) %>%
as.rel_freq()
## Source: local data frame [4 x 4]
## Groups: am
##
## am gear n rel.freq
## 1 0 3 15 79%
## 2 0 4 4 21%
## 3 1 4 8 62%
## 4 1 5 5 38%
你可以使用count()函数,但是根据dplyr版本的不同,它有不同的行为:
Dplyr 0.7.1:返回一个未分组的表:您需要通过am重新分组
Dplyr < 0.7.1:返回一个分组表,因此不需要再次分组,尽管您可能希望为以后的操作取消group()
抑郁症是0.7.1
mtcars %>%
count(am, gear) %>%
group_by(am) %>%
mutate(freq = n / sum(n))
德普林斯
mtcars %>%
count(am, gear) %>%
mutate(freq = n / sum(n))
这将生成一个分组表,如果您希望将其用于进一步分析,使用ungroup()删除分组属性可能会很有用。
下面是一个基于R的答案,使用了aggregate和ave:
df1 <- with(mtcars, aggregate(list(n = mpg), list(am = am, gear = gear), length))
df1$prop <- with(df1, n/ave(n, am, FUN = sum))
#Also with prop.table
#df1$prop <- with(df1, ave(n, am, FUN = prop.table))
df1
# am gear n prop
#1 0 3 15 0.7894737
#2 0 4 4 0.2105263
#3 1 4 8 0.6153846
#4 1 5 5 0.3846154
我们也可以用道具。表,但输出显示不同。
prop.table(table(mtcars$am, mtcars$gear), 1)
# 3 4 5
# 0 0.7894737 0.2105263 0.0000000
# 1 0.0000000 0.6153846 0.3846154