我在一个计算资源共享的环境中工作,也就是说,我们有几台服务器机器,每台机器都配备了几个Nvidia Titan X gpu。
For small to moderate size models, the 12 GB of the Titan X is usually enough for 2–3 people to run training concurrently on the same GPU. If the models are small enough that a single model does not take full advantage of all the computational units of the GPU, this can actually result in a speedup compared with running one training process after the other. Even in cases where the concurrent access to the GPU does slow down the individual training time, it is still nice to have the flexibility of having multiple users simultaneously train on the GPU.
TensorFlow的问题在于,默认情况下,它在启动时分配了全部可用的GPU内存。即使是一个小型的两层神经网络,我看到所有12 GB的GPU内存都用完了。
有没有一种方法让TensorFlow只分配,比如说,4 GB的GPU内存,如果我们知道这对一个给定的模型来说已经足够了?
好吧,我是张sorflow的新手,我有Geforce 740m或一些带有2GB ram的GPU,我正在运行mnist手写的原生语言示例,训练数据包含38700张图像和4300张测试图像,并试图获得精度,回忆,F1使用以下代码,因为sklearn没有给我精确的结果。一旦我把这个添加到我现有的代码,我开始得到GPU错误。
TP = tf.count_nonzero(predicted * actual)
TN = tf.count_nonzero((predicted - 1) * (actual - 1))
FP = tf.count_nonzero(predicted * (actual - 1))
FN = tf.count_nonzero((predicted - 1) * actual)
prec = TP / (TP + FP)
recall = TP / (TP + FN)
f1 = 2 * prec * recall / (prec + recall)
加上我的模型是沉重的我猜,我是内存错误147年之后,148年的时代,然后我想为什么不创建函数的任务,所以我不知道如果在tensrorflow这种方式工作,但我认为如果使用局部变量,当定义的范围可能释放内存和i上述元素的训练和测试模块,我能够达到10000时代没有任何问题,我希望这将帮助. .
以下是《TensorFlow深度学习》一书的节选
In some cases it is desirable for the process to only allocate a subset of the available memory, or to only grow the memory usage as it is needed by the process. TensorFlow provides two configuration options on the session to control this. The first is the allow_growth option, which attempts to allocate only as much GPU memory based on runtime allocations, it starts out allocating very little memory, and as sessions get run and more GPU memory is needed, we extend the GPU memory region needed by the TensorFlow process.
1)允许增长:(更灵活)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)
第二个方法是per_process_gpu_memory_fraction选项,它决定每个可见GPU应该分配的内存总量的百分比。注意:不需要释放内存,这样做甚至会恶化内存碎片。
2)分配固定内存:
每个GPU只分配40%的内存:
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)
注意:
不过,只有当你真的想绑定TensorFlow进程上可用的GPU内存数量时,这才有用。
对于TensorFlow 2.0和2.1 (docs):
import tensorflow as tf
tf.config.gpu.set_per_process_memory_growth(True)
对于TensorFlow 2.2+ (docs):
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
文档还列出了更多的方法:
设置环境变量TF_FORCE_GPU_ALLOW_GROWTH为true。
使用tf.config.experimental。set_virtual_device_configuration设置虚拟GPU设备的硬限制。
Tensorflow 2.0 Beta和(可能)更高版本
API再次改变。现在可以在以下地方找到它:
tf.config.experimental.set_memory_growth(
device,
enable
)
别名:
tf.compat.v1.config.experimental.set_memory_growth
tf.compat.v2.config.experimental.set_memory_growth
引用:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/config/experimental/set_memory_growth
https://www.tensorflow.org/guide/gpu#limiting_gpu_memory_growth
参见:
Tensorflow—使用GPU: https://www.tensorflow.org/guide/gpu
对于Tensorflow 2.0 Alpha,请参见:这个答案