我在一个计算资源共享的环境中工作,也就是说,我们有几台服务器机器,每台机器都配备了几个Nvidia Titan X gpu。

For small to moderate size models, the 12 GB of the Titan X is usually enough for 2–3 people to run training concurrently on the same GPU. If the models are small enough that a single model does not take full advantage of all the computational units of the GPU, this can actually result in a speedup compared with running one training process after the other. Even in cases where the concurrent access to the GPU does slow down the individual training time, it is still nice to have the flexibility of having multiple users simultaneously train on the GPU.

TensorFlow的问题在于,默认情况下,它在启动时分配了全部可用的GPU内存。即使是一个小型的两层神经网络,我看到所有12 GB的GPU内存都用完了。

有没有一种方法让TensorFlow只分配,比如说,4 GB的GPU内存,如果我们知道这对一个给定的模型来说已经足够了?


当前回答

对于Tensorflow 2.0和2.1版本,请使用以下代码片段:

 import tensorflow as tf
 gpu_devices = tf.config.experimental.list_physical_devices('GPU')
 tf.config.experimental.set_memory_growth(gpu_devices[0], True)

对于以前的版本,下面的代码段用于我:

import tensorflow as tf
tf_config=tf.ConfigProto()
tf_config.gpu_options.allow_growth=True
sess = tf.Session(config=tf_config)

其他回答

config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)

https://github.com/tensorflow/tensorflow/issues/1578

以下是《TensorFlow深度学习》一书的节选

In some cases it is desirable for the process to only allocate a subset of the available memory, or to only grow the memory usage as it is needed by the process. TensorFlow provides two configuration options on the session to control this. The first is the allow_growth option, which attempts to allocate only as much GPU memory based on runtime allocations, it starts out allocating very little memory, and as sessions get run and more GPU memory is needed, we extend the GPU memory region needed by the TensorFlow process.

1)允许增长:(更灵活)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)

第二个方法是per_process_gpu_memory_fraction选项,它决定每个可见GPU应该分配的内存总量的百分比。注意:不需要释放内存,这样做甚至会恶化内存碎片。

2)分配固定内存:

每个GPU只分配40%的内存:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

注意: 不过,只有当你真的想绑定TensorFlow进程上可用的GPU内存数量时,这才有用。

当你构造一个tf时,你可以设置GPU内存的分配比例。会话通过传递一个tf。GPUOptions作为可选配置参数的一部分:

# Assume that you have 12GB of GPU memory and want to allocate ~4GB:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

per_process_gpu_memory_fraction充当同一台机器上每个GPU上的进程将使用的GPU内存量的硬上限。目前,这个分数统一应用于同一台机器上的所有gpu;没有办法在每个gpu基础上设置这个。

上面所有的答案都假设使用sess.run()调用来执行,这在TensorFlow的最新版本中成为异常而不是规则。

当使用tf。估计器框架(TensorFlow 1.4及以上)将分数传递给隐式创建的MonitoredTrainingSession的方式是,

opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
conf = tf.ConfigProto(gpu_options=opts)
trainingConfig = tf.estimator.RunConfig(session_config=conf, ...)
tf.estimator.Estimator(model_fn=..., 
                       config=trainingConfig)

类似地,在Eager模式下(TensorFlow 1.5及以上),

opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
conf = tf.ConfigProto(gpu_options=opts)
tfe.enable_eager_execution(config=conf)

编辑:11-04-2018 例如,如果要使用tf.contrib.gan。Train,那么你可以使用类似bellow的东西:

tf.contrib.gan.gan_train(........, config=conf)
# allocate 60% of GPU memory 
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf 
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.6
set_session(tf.Session(config=config))