这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

分流收益!

重要的是要理解分支错误控制不会减慢程序。 错误预测的成本就好像不存在分支预测,而你等待着对表达方式的评价来决定运行的代码(下段有进一步的解释 ) 。

if (expression)
{
    // Run 1
} else {
    // Run 2
}

当出现 if-else \ 切换语句时, 表达式必须被评估以确定要执行哪个区块。 在编译者生成的组装代码中, 插入有条件的分支指令 。

分支指令可导致计算机开始执行不同的指令序列,从而偏离其默认的按顺序执行指令的行为(即如果表达式是虚假的,程序会跳过区块的代码),这取决于某些条件,即我们情况下的表达式评价。

尽管如此, 编译者试图预测结果, 然后再对结果进行实际评估。 它会从区块中获取指示, 如果表达方式是真实的, 那么就太好了! 我们得到了时间来评估它, 并在代码中取得了进步; 如果不是那样, 我们运行错误的代码, 管道就会被冲洗, 正确的区块会运行 。

可视化:

假设你需要选择路线1或路线2, 等待你的伴侣检查地图, 你已经停留在 ##,等待, 或者你可以选择路线1, 如果你运气好(路线1是正确的路线), 那么伟大的你不必等待你的伴侣检查地图(你省下时间让他检查地图), 否则你就会转回去。

尽管冲水管道的速度超快,但如今赌博是值得的。 预测分类数据或缓慢变化的数据总是比预测快速变化容易,也好于预测快速变化。

 O      Route 1  /-------------------------------
/|\             /
 |  ---------##/
/ \            \
                \
        Route 2  \--------------------------------

其他回答

分部门预测。

使用分类数组, 条件数据 [c] 128 首先对于一系列值来说是虚假的, 然后对所有后期值都变成真实的。 这很容易预测。 使用未排序数组, 您支付分支成本 。

以上行为之所以发生 是因为分局的预测

要了解分支预测,首先必须了解指示管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤顺序重叠,这样可以同时同时执行不同的步骤。 这个技术被称为指令管线, 用来增加现代处理器的输送量。 要更好地了解这一点, 请在维基百科上看到这个例子 。

一般来说,现代处理器有相当长(和宽)的管道,因此许多指令都可以在飞行中。 见现代微处理器 A 90-Minute 指南!该指南首先引入基本的自序管线,然后从那里开始。

但为了方便起见,让我们考虑一个简单的单行输油管,只有这4个步骤。 (像典型的5级RISC一样,但省略了单独的 MEM 阶段。 )

IF -- -- 从内存 ID 获取指令 -- -- 解码指令 EX -- -- 执行指令 WB -- 写回到 CPU 注册簿

一般为2项指示提供4级输油管。

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指示B或指示C,处理器必须等待(暂停)直到指示A离开管道中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处获取)。

没有预测:如果情况属实:

不预言:如果情况不实:

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的:

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。当分支错误时浪费的时间相当于从获取阶段到执行阶段的管道阶段的数量。现代微处理器往往有相当长的管道,因此错误预防的延迟时间在10到20小时的周期之间。管道越长,对良好的分支预测器的需求就越大。

在OP的代码中,当有条件的分支预测器第一次没有任何信息可以作为预测的基础,因此第一次它会随机选择下一个指令。 (或者返回静态预测,通常不前进,后退)。在循环中,它可以在历史的基础上进行预测。对于按升序排序的阵列,有三种可能性:

所有要件均大于128 有些开始的新要件小于128,稍晚则大于128

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

现代微处理器 A 90- Minute 指南! Dan Luuu 的关于分支预测的文章( 包括较老的分支预测器, 不是现代IT- TAGE 或 Perceptron) https:// en. wikipedia.org/ wiki/ Branch_ predictor 分支预测和解释器的性能 https:// en. wikipedia. org/ wiki/ Branch_ predictor 分支预测器 - 不要信任 Followlore - 2015 显示 Intel's Haswell 在预测 Python 翻译主循环的间接分支( 由不简单模式造成历史问题) , 与没有使用 IT- TAGE 的早期 CPUs 相比, 早期的CPUs presenterv( 类似循环) 没有帮助完全使用这个完全随机的 。 当源代码时, 最不可能的C- train lishing lishal listal lives liver 已经使用了, liver 。

这个问题根植于CPUs的分支预测模型。

通过多分支预测和分支处理缓存来提高教学取回率(但现在的实际 CPU 仍然不能在每时钟周期中做出多个支流控制,但Haswell 和后来在循环缓冲中有效释放的小循环除外。 现代 CPU 可以预测多个未取用的分支, 以利用大毗连区块中的提取。 )

当您对元素进行分类时,分支预测很容易预测正确,除非在边界正确,允许指示有效通过CPU管道,而不必倒转和正确选择错误预测路径。

你是树枝预测失败的受害者


分会的预测是什么?

考虑铁路交叉点:

依据CC-By-SA 3.

现在,为了争论起见,假设这是在1800年代, 在长途或无线电通信之前。

您是连接点的盲人接线员, 听到火车来电的声音。 您不知道该走哪条路。 您停止了火车, 询问司机他们想要的方向 。 然后您将开关设置得当 。

火车很重,而且有很多惰性, 所以它们需要永远的启动 并放慢速度。

有更好的办法吗?

如果你猜对了,它会继续。如果你猜错,船长会停下来,后退,喊你按开关。然后它就可以从另一条路重新开始。

如果你每次猜对一次,火车就永远不会停止。如果你猜错太频繁,火车就会花很多时间停下来、备份和重新开始。


考虑是否说明:在加工者一级,它是分支指令:

你是一个处理者,你看见一个分支。你不知道它会走哪条路。你做什么?你停止执行,等待以前的指令完成。然后,你继续走正确的道路。

现代处理器复杂,管道长。 这意味着它们永远需要“暖和”和“慢下来 ” 。

有更好的办法吗?

如果您猜对了, 您将继续执行 。 如果您猜错, 您需要冲洗管道并滚回分支 。 然后您就可以重新启动另一条路径 。

如果你每次都猜对了,处决永远不会停止。如果你猜错太频繁,你就会花很多时间拖延、倒退和重新开始。


这是分支预测。 我承认这不是最好的比喻, 因为火车只能用旗帜发出方向信号。 但在电脑上, 处理器不知道分支会朝哪个方向前进, 直到最后一刻。

您在战略上如何猜测如何将列车必须返回并沿着另一条路行驶的次数最小化 ? 您看看过去的历史 。 如果列车离开99%的时间, 那么您会猜到离开 。 如果列车转行, 那么您会换个猜想 。 如果列车每走三次, 您也会猜到同样的情况 。

换句话说,你尝试确定一个模式并遵循它。这或多或少是分支预测器的工作方式。

大多数应用程序都有良好的分支。 因此,现代分支预测器通常会达到超过90%的冲击率。 但是,当面对无法预见且没有可识别模式的分支时,分支预测器几乎毫无用处。

继续读到维基百科上的“Branch 预测家”文章。


正如上面所暗示的,罪魁祸首就是这个说法:

if (data[c] >= 128)
    sum += data[c];

请注意数据分布在 0 和 255 之间。 当对数据进行分类时, 大约前半段的迭代不会输入 if 语句 。 在此之后, 它们都会输入 if 语句 。

这是对分支预测器非常友好的, 因为分支连续向同一方向运行很多次。 即使是简单的饱和计数器也会正确预测分支, 除了在切换方向之后的几处迭代之外 。

快速可视化 :

T = branch taken
N = branch not taken

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)

然而,当数据完全随机时,分支预测器就变得毫无用处,因为它无法预测随机数据。因此,可能会有大约50%的误用(没有比随机猜测更好的了 ) 。

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T  ...

       = TTNTTTTNTNNTTT ...   (completely random - impossible to predict)

能够做些什么?

如果编译者无法将分支优化为有条件的动作, 您可以尝试一些黑客, 如果您愿意牺牲可读性来表现 。

替换:

if (data[c] >= 128)
    sum += data[c];

与:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

这将清除分支, 并替换为一些位元操作 。

(注意这个黑客并不完全等同原始的假称。 但在此情况下, 它对于数据的所有输入值都是有效的 。 )

基准:核心i7 920@3.5千兆赫

C++ - 2010 - x64 释放

Scenario Time (seconds)
Branching - Random data 11.777
Branching - Sorted data 2.352
Branchless - Random data 2.564
Branchless - Sorted data 2.587

Java - Netbeans 7.1.1 JDK 7 - x64

Scenario Time (seconds)
Branching - Random data 10.93293813
Branching - Sorted data 5.643797077
Branchless - Random data 3.113581453
Branchless - Sorted data 3.186068823

意见:

分支 : 分类的数据和未分类的数据之间有很大的差别。 在 Hack 中: 分类的数据和未分类的数据之间没有差别。 在 C++ 中, 黑客实际上比数据分类时的分支要慢一点 。

拇指的一般规则是避免在关键循环(如本例)中出现依赖数据的分支。


更新 :

GCC 4. 6.1 在 x64 上使用 -O3 或 -free-victorization 能够生成一个有条件的移动, 因此分解和未分解的数据之间没有差别, 两者都是快速的。 (或者说快速的 : 对于已经分解的个案, cmov 可以慢一些, 特别是如果 GCC 将其置于关键路径上而不是仅仅添加, 尤其是在 Broadwell 之前的Intel , 那里 cmov 有2个周期的悬浮 : gcc 优化旗 - O3 使代码慢于 - O2 ) VC+/ 2010 即使在 / Ox 下也无法为这个分支生成有条件的动作 。 Intel C++ Commonder (ICC) 11 也无法生成奇迹性的东西 。 它将两个环切换, 从而将不可预测的分支拉动到外部环 。 不仅能避免错误, , 而且它也比 VC++ 和 GC 生成的任意 还要快一倍 。 。 。 。 换 。

这表明即使是成熟的现代编译者 在优化代码的能力上 也会大不相同...

官方的回答是来自

英特尔 -- -- 避免误用英特尔分公司的成本 -- -- 分公司和循环重组以防止误用科学论文 -- -- 分公司预测计算机建筑书籍:J.L. Hennessy, D.A. Patterson:计算机结构:定量方法 科学出版物中的文章:T.Y. Yeh, Y.N. Patt在分支预测方面做了许多这些。

你也可以从这张可爱的图表中看到 树枝预测器为什么会被混淆。

原始代码中的每个元素都是随机值

data[c] = std::rand() % 256;

所以预测器会随着 : rand () 的打击而改变两边。

另一方面,一旦对预测进行分类, 预测器将首先进入一个 强烈未被采纳的状态, 当值变化到高值时, 预测器将分三步走, 从强烈未被采纳到强烈被采纳。