我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:

df.columns = new_column_name_list

然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。 我能想到的唯一解决办法是:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。

有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?

我的Spark版本是1.5.0


当前回答

如果您想更改所有列名,请尝试df.toDF(*cols)

其他回答

我们可以使用col.alias重命名列:

from pyspark.sql.functions import col
df.select(['vin',col('timeStamp').alias('Date')]).show()

如果你想重命名一个列,并保持其他列不变:

from pyspark.sql.functions import col
new_df = old_df.select(*[col(s).alias(new_name) if s == column_to_change else s for s in old_df.columns])

对于单个列重命名,仍然可以使用toDF()。例如,

df1.selectExpr("SALARY*2").toDF("REVISED_SALARY").show()

如果您想更改所有列名,请尝试df.toDF(*cols)

df = df.withColumnRenamed("colName", "newColName")\
       .withColumnRenamed("colName2", "newColName2")

使用这种方式的优点:对于一个很长的列列表,您只需要更改几个列名。这在这些场景中非常方便。在连接具有重复列名的表时非常有用。