我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:

df.columns = new_column_name_list

然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。 我能想到的唯一解决办法是:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。

有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?

我的Spark版本是1.5.0


当前回答

如果你想对所有列名应用一个简单的转换,这段代码可以做到:(我用下划线替换所有空格)

new_column_name_list= list(map(lambda x: x.replace(" ", "_"), df.columns))

df = df.toDF(*new_column_name_list)

感谢@user8117731的toDf技巧。

其他回答

我喜欢使用字典重命名df。

rename = {'old1': 'new1', 'old2': 'new2'}
for col in df.schema.names:
    df = df.withColumnRenamed(col, rename[col])

如果您想更改所有列名,请尝试df.toDF(*cols)

列表理解+ f-string:

df = df.toDF(*[f'n_{c}' for c in df.columns])

简单的列表理解:

df = df.toDF(*[c.lower() for c in df.columns])

如果你想重命名一个列,并保持其他列不变:

from pyspark.sql.functions import col
new_df = old_df.select(*[col(s).alias(new_name) if s == column_to_change else s for s in old_df.columns])

如果你想对所有列名应用一个简单的转换,这段代码可以做到:(我用下划线替换所有空格)

new_column_name_list= list(map(lambda x: x.replace(" ", "_"), df.columns))

df = df.toDF(*new_column_name_list)

感谢@user8117731的toDf技巧。