假设我有一个4核CPU,我想在最短的时间内运行某个进程。这个过程在理想情况下是可并行的,所以我可以在无数个线程上运行它的块,每个线程花费相同的时间。

因为我有4个内核,所以我不期望通过运行比内核更多的线程来提高速度,因为单个内核在给定时刻只能运行单个线程。我对硬件了解不多,所以这只是一个猜测。

在更多的线程而不是核心上运行并行进程是否有好处?换句话说,如果我使用4000个线程而不是4个线程运行,我的进程会更快、更慢,还是在大约相同的时间内完成?


当前回答

基准。

我会开始增加应用程序的线程数,从1开始,然后增加到100,对每个线程数运行3 - 5次试验,并建立一个操作速度与线程数的关系图。

您应该认为四个线程的情况是最优的,在此之后运行时略有增加,但也可能不是。这可能是你的应用程序带宽有限,也就是说,你加载到内存中的数据集是巨大的,你得到了很多缓存失误,等等,这样2个线程是最佳的。

你不测试就不知道。

其他回答

理想的情况是每个内核有一个线程,只要没有线程会阻塞。

在一种情况下,这可能是不正确的:有其他线程在核心上运行,在这种情况下,更多的线程可能会给您的程序更大的执行时间。

希望这是有意义的,检查CPU和内存利用率,并设置一些阈值。如果超过阈值,不允许创建新的线程,否则允许…

实际性能取决于每个线程的自愿屈服程度。例如,如果线程根本不做I/O,也不使用任何系统服务(即它们100%受cpu限制),那么每个核1个线程是最优的。如果线程执行任何需要等待的操作,那么您必须试验以确定最佳线程数。4000个线程会导致大量的调度开销,所以这可能也不是最优的。

答案取决于程序中使用的算法的复杂性。我提出了一个计算最佳线程数的方法,即对任意数量的线程“n”和“m”进行两次处理时间Tn和Tm的测量。对于线性算法,最佳线程数为N =√((mn(Tm*(N -1) - Tn*(m-1)))/(nTn-mTm))。

请阅读我关于各种算法的最优数计算的文章:pavelkazenin.wordpress.com

我想在这里补充另一个观点。答案取决于这个问题是假设弱缩放还是强缩放。

从维基百科:

弱伸缩性:对于每个处理器的固定问题大小,解决时间如何随着处理器数量的变化而变化。

强伸缩性:对于固定的总问题规模,解决时间如何随着处理器数量的变化而变化。

If the question is assuming weak scaling then @Gonzalo's answer suffices. However if the question is assuming strong scaling, there's something more to add. In strong scaling you're assuming a fixed workload size so if you increase the number of threads, the size of the data that each thread needs to work on decreases. On modern CPUs memory accesses are expensive and would be preferable to maintain locality by keeping the data in caches. Therefore, the likely optimal number of threads can be found when the dataset of each thread fits in each core's cache (I'm not going into the details of discussing whether it's L1/L2/L3 cache(s) of the system).

即使线程数超过内核数,这也是成立的。例如,假设程序中有8个任意单位(AU)的工作将在4核机器上执行。

案例1:运行四个线程,每个线程需要完成2AU。每个线程需要10秒来完成(有很多缓存丢失)。对于四个内核,总时间为10s (10s * 4个线程/ 4个内核)。

情况2:运行8个线程,每个线程需要完成1AU。每个线程只需要2s(而不是5s,因为缓存丢失的数量减少了)。如果是四核,总时间为4s (2s * 8线程/ 4核)。

我简化了这个问题,忽略了其他答案中提到的开销(例如,上下文切换),但希望您明白,根据您正在处理的数据大小,拥有比可用内核数量更多的线程可能是有益的。