如何在PyTorch中保存训练好的模型?我读到过:
Torch.save ()/torch.load()用于保存/加载可序列化对象。 model.state_dict()/model.load_state_dict()用于保存/加载模型状态。
如何在PyTorch中保存训练好的模型?我读到过:
Torch.save ()/torch.load()用于保存/加载可序列化对象。 model.state_dict()/model.load_state_dict()用于保存/加载模型状态。
当前回答
一个常见的PyTorch约定是使用.pt或.pth文件扩展名保存模型。
保存/加载整个模型
拯救策略:
path = "username/directory/lstmmodelgpu.pth"
torch.save(trainer, path)
负载:
(模型类必须在某处定义)
model.load_state_dict(torch.load(PATH))
model.eval()
其他回答
一个常见的PyTorch约定是使用.pt或.pth文件扩展名保存模型。
保存/加载整个模型
拯救策略:
path = "username/directory/lstmmodelgpu.pth"
torch.save(trainer, path)
负载:
(模型类必须在某处定义)
model.load_state_dict(torch.load(PATH))
model.eval()
如果您想保存模型,并希望稍后恢复训练:
单一的GPU: 拯救策略:
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
savepath='checkpoint.t7'
torch.save(state,savepath)
负载:
checkpoint = torch.load('checkpoint.t7')
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
多个GPU: 保存
state = {
'epoch': epoch,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
}
savepath='checkpoint.t7'
torch.save(state,savepath)
负载:
checkpoint = torch.load('checkpoint.t7')
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
#Don't call DataParallel before loading the model otherwise you will get an error
model = nn.DataParallel(model) #ignore the line if you want to load on Single GPU
PIP安装火炬闪电
确保你的父模型使用pl.LightningModule而不是nn。模块
使用pytorch闪电保存和加载检查点
import pytorch_lightning as pl
model = MyLightningModule(hparams)
trainer.fit(model)
trainer.save_checkpoint("example.ckpt")
new_model = MyModel.load_from_checkpoint(checkpoint_path="example.ckpt")
保存在本地
如何保存模型取决于将来如何访问它。如果你可以调用模型类的一个新实例,那么你所需要做的就是用model.state_dict()保存/加载模型的权重:
# Save:
torch.save(old_model.state_dict(), PATH)
# Load:
new_model = TheModelClass(*args, **kwargs)
new_model.load_state_dict(torch.load(PATH))
如果你因为任何原因(或者更喜欢简单的语法)不能,那么你可以使用torch.save()保存整个模型(实际上是对定义模型的文件的引用,以及它的state_dict):
# Save:
torch.save(old_model, PATH)
# Load:
new_model = torch.load(PATH)
但是由于这是对定义模型类的文件位置的引用,所以这段代码是不可移植的,除非这些文件也移植到相同的目录结构中。
保存到云- TorchHub
如果您希望您的模型是可移植的,您可以轻松地使用torch.hub导入它。如果你在github repo中添加了一个适当定义的hubconf.py文件,这可以很容易地在PyTorch中调用,使用户能够加载你的模型,带/不带权重:
hubconf.py (github.com/repo_owner/repo_name)
dependencies = ['torch']
from my_module import mymodel as _mymodel
def mymodel(pretrained=False, **kwargs):
return _mymodel(pretrained=pretrained, **kwargs)
加载模型:
new_model = torch.hub.load('repo_owner/repo_name', 'mymodel')
new_model_pretrained = torch.hub.load('repo_owner/repo_name', 'mymodel', pretrained=True)
我总是喜欢使用Torch7 (.t7)或Pickle (.pth, .pt)来保存pytorch模型的权重。