我所有的记录都有一个名为“图片”的字段。这个字段是一个字符串数组。

我现在想要最新的10条记录,其中这个数组不是空的。

我搜索了一下,但奇怪的是,我并没有在这方面找到太多。 我已经阅读了$where选项,但我想知道本机函数有多慢,如果有更好的解决方案。

即便如此,这也行不通:

ME.find({$where: 'this.pictures.length > 0'}).sort('-created').limit(10).execFind()

返回什么。离开这。没有长度位的图片也可以,但当然,它也会返回空记录。


当前回答

查询时需要考虑两件事——准确性和性能。考虑到这一点,我在MongoDB v3.0.14中测试了几种不同的方法。

TL; db.doc博士。find({nums: {$gt: -Infinity}})是最快和最可靠的(至少在我测试的MongoDB版本中是这样)。

编辑:这不再工作在MongoDB v3.6!请参阅本文下面的评论,了解可能的解决方案。

设置

我插入了1k个带有列表字段的文档,1k个带有空列表的文档,5个带有非空列表的文档。

for (var i = 0; i < 1000; i++) { db.doc.insert({}); }
for (var i = 0; i < 1000; i++) { db.doc.insert({ nums: [] }); }
for (var i = 0; i < 5; i++) { db.doc.insert({ nums: [1, 2, 3] }); }
db.doc.createIndex({ nums: 1 });

我知道这不足以像我在下面的测试中那样认真对待性能,但它足以显示各种查询的正确性和所选查询计划的行为。

测试

db.doc。Find ({'nums': {'$exists': true}})返回错误的结果(对于我们试图完成的任务)。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': {'$exists': true}}).count()
1005

--

db.doc.find ({num”。0': {'$exists': true}})返回正确的结果,但使用完整的集合扫描也很慢(注意解释中的COLLSCAN阶段)。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums.0': {'$exists': true}}).count()
5
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums.0': {'$exists': true}}).explain()
{
  "queryPlanner": {
    "plannerVersion": 1,
    "namespace": "test.doc",
    "indexFilterSet": false,
    "parsedQuery": {
      "nums.0": {
        "$exists": true
      }
    },
    "winningPlan": {
      "stage": "COLLSCAN",
      "filter": {
        "nums.0": {
          "$exists": true
        }
      },
      "direction": "forward"
    },
    "rejectedPlans": [ ]
  },
  "serverInfo": {
    "host": "MacBook-Pro",
    "port": 27017,
    "version": "3.0.14",
    "gitVersion": "08352afcca24bfc145240a0fac9d28b978ab77f3"
  },
  "ok": 1
}

--

db.doc。Find ({'nums': {$exists: true, $gt: {' $size': 0}}})返回错误的结果。这是因为无效的索引扫描没有推进文件。如果没有指数,它可能会很准确,但会很慢。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $gt: { '$size': 0 }}}).count()
0
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $gt: { '$size': 0 }}}).explain('executionStats').executionStats.executionStages
{
  "stage": "KEEP_MUTATIONS",
  "nReturned": 0,
  "executionTimeMillisEstimate": 0,
  "works": 2,
  "advanced": 0,
  "needTime": 0,
  "needFetch": 0,
  "saveState": 0,
  "restoreState": 0,
  "isEOF": 1,
  "invalidates": 0,
  "inputStage": {
    "stage": "FETCH",
    "filter": {
      "$and": [
        {
          "nums": {
            "$gt": {
              "$size": 0
            }
          }
        },
        {
          "nums": {
            "$exists": true
          }
        }
      ]
    },
    "nReturned": 0,
    "executionTimeMillisEstimate": 0,
    "works": 1,
    "advanced": 0,
    "needTime": 0,
    "needFetch": 0,
    "saveState": 0,
    "restoreState": 0,
    "isEOF": 1,
    "invalidates": 0,
    "docsExamined": 0,
    "alreadyHasObj": 0,
    "inputStage": {
      "stage": "IXSCAN",
      "nReturned": 0,
      "executionTimeMillisEstimate": 0,
      "works": 1,
      "advanced": 0,
      "needTime": 0,
      "needFetch": 0,
      "saveState": 0,
      "restoreState": 0,
      "isEOF": 1,
      "invalidates": 0,
      "keyPattern": {
        "nums": 1
      },
      "indexName": "nums_1",
      "isMultiKey": true,
      "direction": "forward",
      "indexBounds": {
        "nums": [
          "({ $size: 0.0 }, [])"
        ]
      },
      "keysExamined": 0,
      "dupsTested": 0,
      "dupsDropped": 0,
      "seenInvalidated": 0,
      "matchTested": 0
    }
  }
}

--

db.doc。Find ({'nums': {$exists: true, $not: {' $size': 0}}})返回正确的结果,但性能较差。从技术上讲,它会进行索引扫描,但随后它仍然会推进所有文档,然后必须对它们进行过滤)。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $not: { '$size': 0 }}}).count()
5
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $not: { '$size': 0 }}}).explain('executionStats').executionStats.executionStages
{
  "stage": "KEEP_MUTATIONS",
  "nReturned": 5,
  "executionTimeMillisEstimate": 0,
  "works": 2016,
  "advanced": 5,
  "needTime": 2010,
  "needFetch": 0,
  "saveState": 15,
  "restoreState": 15,
  "isEOF": 1,
  "invalidates": 0,
  "inputStage": {
    "stage": "FETCH",
    "filter": {
      "$and": [
        {
          "nums": {
            "$exists": true
          }
        },
        {
          "$not": {
            "nums": {
              "$size": 0
            }
          }
        }
      ]
    },
    "nReturned": 5,
    "executionTimeMillisEstimate": 0,
    "works": 2016,
    "advanced": 5,
    "needTime": 2010,
    "needFetch": 0,
    "saveState": 15,
    "restoreState": 15,
    "isEOF": 1,
    "invalidates": 0,
    "docsExamined": 2005,
    "alreadyHasObj": 0,
    "inputStage": {
      "stage": "IXSCAN",
      "nReturned": 2005,
      "executionTimeMillisEstimate": 0,
      "works": 2015,
      "advanced": 2005,
      "needTime": 10,
      "needFetch": 0,
      "saveState": 15,
      "restoreState": 15,
      "isEOF": 1,
      "invalidates": 0,
      "keyPattern": {
        "nums": 1
      },
      "indexName": "nums_1",
      "isMultiKey": true,
      "direction": "forward",
      "indexBounds": {
        "nums": [
          "[MinKey, MaxKey]"
        ]
      },
      "keysExamined": 2015,
      "dupsTested": 2015,
      "dupsDropped": 10,
      "seenInvalidated": 0,
      "matchTested": 0
    }
  }
}

--

db.doc。Find ({'nums': {$exists: true, $ne:[]}})返回正确的结果,速度稍快,但性能仍然不理想。它使用IXSCAN,它只改进具有现有列表字段的文档,但随后必须逐个过滤空列表。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $ne: [] }}).count()
5
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $exists: true, $ne: [] }}).explain('executionStats').executionStats.executionStages
{
  "stage": "KEEP_MUTATIONS",
  "nReturned": 5,
  "executionTimeMillisEstimate": 0,
  "works": 1018,
  "advanced": 5,
  "needTime": 1011,
  "needFetch": 0,
  "saveState": 15,
  "restoreState": 15,
  "isEOF": 1,
  "invalidates": 0,
  "inputStage": {
    "stage": "FETCH",
    "filter": {
      "$and": [
        {
          "$not": {
            "nums": {
              "$eq": [ ]
            }
          }
        },
        {
          "nums": {
            "$exists": true
          }
        }
      ]
    },
    "nReturned": 5,
    "executionTimeMillisEstimate": 0,
    "works": 1017,
    "advanced": 5,
    "needTime": 1011,
    "needFetch": 0,
    "saveState": 15,
    "restoreState": 15,
    "isEOF": 1,
    "invalidates": 0,
    "docsExamined": 1005,
    "alreadyHasObj": 0,
    "inputStage": {
      "stage": "IXSCAN",
      "nReturned": 1005,
      "executionTimeMillisEstimate": 0,
      "works": 1016,
      "advanced": 1005,
      "needTime": 11,
      "needFetch": 0,
      "saveState": 15,
      "restoreState": 15,
      "isEOF": 1,
      "invalidates": 0,
      "keyPattern": {
        "nums": 1
      },
      "indexName": "nums_1",
      "isMultiKey": true,
      "direction": "forward",
      "indexBounds": {
        "nums": [
          "[MinKey, undefined)",
          "(undefined, [])",
          "([], MaxKey]"
        ]
      },
      "keysExamined": 1016,
      "dupsTested": 1015,
      "dupsDropped": 10,
      "seenInvalidated": 0,
      "matchTested": 0
    }
  }
}

--

db.doc。find({'nums': {$gt:[]}})是危险的,因为根据所使用的索引,它可能会给出意想不到的结果。这是因为无效的索引扫描没有推进任何文档。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $gt: [] }}).count()
0
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $gt: [] }}).hint({ nums: 1 }).count()
0
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $gt: [] }}).hint({ _id: 1 }).count()
5

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $gt: [] }}).explain('executionStats').executionStats.executionStages
{
  "stage": "KEEP_MUTATIONS",
  "nReturned": 0,
  "executionTimeMillisEstimate": 0,
  "works": 1,
  "advanced": 0,
  "needTime": 0,
  "needFetch": 0,
  "saveState": 0,
  "restoreState": 0,
  "isEOF": 1,
  "invalidates": 0,
  "inputStage": {
    "stage": "FETCH",
    "filter": {
      "nums": {
        "$gt": [ ]
      }
    },
    "nReturned": 0,
    "executionTimeMillisEstimate": 0,
    "works": 1,
    "advanced": 0,
    "needTime": 0,
    "needFetch": 0,
    "saveState": 0,
    "restoreState": 0,
    "isEOF": 1,
    "invalidates": 0,
    "docsExamined": 0,
    "alreadyHasObj": 0,
    "inputStage": {
      "stage": "IXSCAN",
      "nReturned": 0,
      "executionTimeMillisEstimate": 0,
      "works": 1,
      "advanced": 0,
      "needTime": 0,
      "needFetch": 0,
      "saveState": 0,
      "restoreState": 0,
      "isEOF": 1,
      "invalidates": 0,
      "keyPattern": {
        "nums": 1
      },
      "indexName": "nums_1",
      "isMultiKey": true,
      "direction": "forward",
      "indexBounds": {
        "nums": [
          "([], BinData(0, ))"
        ]
      },
      "keysExamined": 0,
      "dupsTested": 0,
      "dupsDropped": 0,
      "seenInvalidated": 0,
      "matchTested": 0
    }
  }
}

--

db.doc.find ({num”。0 ': {$gt: -Infinity}})返回正确的结果,但性能较差(使用全集合扫描)。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums.0': { $gt: -Infinity }}).count()
5
MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums.0': { $gt: -Infinity }}).explain('executionStats').executionStats.executionStages
{
  "stage": "COLLSCAN",
  "filter": {
    "nums.0": {
      "$gt": -Infinity
    }
  },
  "nReturned": 5,
  "executionTimeMillisEstimate": 0,
  "works": 2007,
  "advanced": 5,
  "needTime": 2001,
  "needFetch": 0,
  "saveState": 15,
  "restoreState": 15,
  "isEOF": 1,
  "invalidates": 0,
  "direction": "forward",
  "docsExamined": 2005
}

--

db.doc。find({'nums': {$gt: -Infinity}})令人惊讶的是,这工作得非常好!它给出了正确的结果,而且速度很快,从索引扫描阶段向前推进了5个文档。

MacBook-Pro(mongod-3.0.14) test> db.doc.find({'nums': { $gt: -Infinity }}).explain('executionStats').executionStats.executionStages
{
  "stage": "FETCH",
  "nReturned": 5,
  "executionTimeMillisEstimate": 0,
  "works": 16,
  "advanced": 5,
  "needTime": 10,
  "needFetch": 0,
  "saveState": 0,
  "restoreState": 0,
  "isEOF": 1,
  "invalidates": 0,
  "docsExamined": 5,
  "alreadyHasObj": 0,
  "inputStage": {
    "stage": "IXSCAN",
    "nReturned": 5,
    "executionTimeMillisEstimate": 0,
    "works": 15,
    "advanced": 5,
    "needTime": 10,
    "needFetch": 0,
    "saveState": 0,
    "restoreState": 0,
    "isEOF": 1,
    "invalidates": 0,
    "keyPattern": {
      "nums": 1
    },
    "indexName": "nums_1",
    "isMultiKey": true,
    "direction": "forward",
    "indexBounds": {
      "nums": [
        "(-inf.0, inf.0]"
      ]
    },
    "keysExamined": 15,
    "dupsTested": 15,
    "dupsDropped": 10,
    "seenInvalidated": 0,
    "matchTested": 0
  }
}

其他回答

经过更多的寻找,特别是在mongodb文档中,和令人费解的片段在一起,这是答案:

ME.find({pictures: {$exists: true, $not: {$size: 0}}})

从2.6版本开始,另一种方法是将字段与空数组进行比较:

ME.find({pictures: {$gt: []}})

在外壳中进行测试:

> db.ME.insert([
{pictures: [1,2,3]},
{pictures: []},
{pictures: ['']},
{pictures: [0]},
{pictures: 1},
{foobar: 1}
])

> db.ME.find({pictures: {$gt: []}})
{ "_id": ObjectId("54d4d9ff96340090b6c1c4a7"), "pictures": [ 1, 2, 3 ] }
{ "_id": ObjectId("54d4d9ff96340090b6c1c4a9"), "pictures": [ "" ] }
{ "_id": ObjectId("54d4d9ff96340090b6c1c4aa"), "pictures": [ 0 ] }

因此,它正确地包含了其中pictures至少有一个数组元素的文档,并排除了其中pictures为空数组、不是数组或缺失的文档。

db.find({ pictures: { $elemMatch: { $exists: true } } })

$elemMatch匹配包含数组字段的文档,其中至少有一个元素与指定的查询匹配。

所有数组都匹配至少一个元素。

检索所有且仅是'pictures'为数组且不为空的文档

ME.find({pictures: {$type: 'array', $ne: []}})

如果使用3.2之前的MongoDb版本,请使用$type: 4而不是$type: 'array'。注意,这个解决方案甚至没有使用$size,因此索引也没有问题(“查询不能为查询的$size部分使用索引”)

其他解决方案,包括以下(公认答案):

我。找到({图片:{$存在:真的,美元不是:{$大小:0}}}); 我。Find ({pictures: {$exists: true, $ne: []}})

是错误的,因为它们返回文档,例如,'pictures'是空的,未定义的,0等。

{ $where: "this.pictures.length > 1" }

使用$where并传递this.field_name。长度,返回数组字段的大小,并通过与number比较来检查它。如果任何数组有任何值,则数组大小必须至少为1。所有数组字段的长度都大于1,这意味着数组中有一些数据