假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

如果你使用pandas,有一个函数隐藏在pandas.io.json中。_normalize1调用nested_to_record来完成这个操作。

from pandas.io.json._normalize import nested_to_record    

flat = nested_to_record(my_dict, sep='_')

1在熊猫0.24版本。X及以上版本使用panda .io.json.normalize(不带_)

其他回答

这里有一个优雅的、就地替换的算法。使用Python 2.7和Python 3.5进行测试。使用点字符作为分隔符。

def flatten_json(json):
    if type(json) == dict:
        for k, v in list(json.items()):
            if type(v) == dict:
                flatten_json(v)
                json.pop(k)
                for k2, v2 in v.items():
                    json[k+"."+k2] = v2

例子:

d = {'a': {'b': 'c'}}                   
flatten_json(d)
print(d)
unflatten_json(d)
print(d)

输出:

{'a.b': 'c'}
{'a': {'b': 'c'}}

我在这里发布了这段代码以及匹配的unflat_json函数。

使用flatdict库:

dic={'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

import flatdict
f =  flatdict.FlatDict(dic,delimiter='_')
print(f)
#output
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}

这一变化扁平化嵌套字典,压缩键与max_level和自定义减速器。

  def flatten(d, max_level=None, reducer='tuple'):
      if reducer == 'tuple':
          reducer_seed = tuple()
          reducer_func = lambda x, y: (*x, y)
      else:
          raise ValueError(f'Unknown reducer: {reducer}')

      def impl(d, pref, level):
        return reduce(
            lambda new_d, kv:
                (max_level is None or level < max_level)
                and isinstance(kv[1], dict)
                and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
                or {**new_d, reducer_func(pref, kv[0]): kv[1]},
                d.items(),
            {}
        )

      return impl(d, reducer_seed, 0)

上面的答案真的很管用。我只是想加上我写的unflatten函数:

def unflatten(d):
    ud = {}
    for k, v in d.items():
        context = ud
        for sub_key in k.split('_')[:-1]:
            if sub_key not in context:
                context[sub_key] = {}
            context = context[sub_key]
        context[k.split('_')[-1]] = v
    return ud

注意:这并没有解释键中已经存在的'_',就像扁平化的对应物一样。

这不完全是OP所要求的,但很多人都来这里寻找方法来平坦现实世界的嵌套JSON数据,这些数据可以有嵌套的键值JSON对象和数组,数组内的JSON对象等等。JSON不包括元组,所以我们不必担心这些。

我找到了@roneo对@Imran发布的答案的列表包含评论的实现:

https://github.com/ScriptSmith/socialreaper/blob/master/socialreaper/tools.py#L8

import collections
def flatten(dictionary, parent_key=False, separator='.'):
    """
    Turn a nested dictionary into a flattened dictionary
    :param dictionary: The dictionary to flatten
    :param parent_key: The string to prepend to dictionary's keys
    :param separator: The string used to separate flattened keys
    :return: A flattened dictionary
    """

    items = []
    for key, value in dictionary.items():
        new_key = str(parent_key) + separator + key if parent_key else key
        if isinstance(value, collections.MutableMapping):
            items.extend(flatten(value, new_key, separator).items())
        elif isinstance(value, list):
            for k, v in enumerate(value):
                items.extend(flatten({str(k): v}, new_key).items())
        else:
            items.append((new_key, value))
    return dict(items)

测试:

flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3] })

>> {'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd.0': 1, 'd.1': 2, 'd.2': 3}

这做的工作,我需要做:我扔任何复杂的json在这,它为我扁平化。

所有学分发送至https://github.com/ScriptSmith。