假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
当前回答
这一变化扁平化嵌套字典,压缩键与max_level和自定义减速器。
def flatten(d, max_level=None, reducer='tuple'):
if reducer == 'tuple':
reducer_seed = tuple()
reducer_func = lambda x, y: (*x, y)
else:
raise ValueError(f'Unknown reducer: {reducer}')
def impl(d, pref, level):
return reduce(
lambda new_d, kv:
(max_level is None or level < max_level)
and isinstance(kv[1], dict)
and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
or {**new_d, reducer_func(pref, kv[0]): kv[1]},
d.items(),
{}
)
return impl(d, reducer_seed, 0)
其他回答
这里有一个优雅的、就地替换的算法。使用Python 2.7和Python 3.5进行测试。使用点字符作为分隔符。
def flatten_json(json):
if type(json) == dict:
for k, v in list(json.items()):
if type(v) == dict:
flatten_json(v)
json.pop(k)
for k2, v2 in v.items():
json[k+"."+k2] = v2
例子:
d = {'a': {'b': 'c'}}
flatten_json(d)
print(d)
unflatten_json(d)
print(d)
输出:
{'a.b': 'c'}
{'a': {'b': 'c'}}
我在这里发布了这段代码以及匹配的unflat_json函数。
使用dict.popitem()在直接的嵌套列表类递归中:
def flatten(d):
if d == {}:
return d
else:
k,v = d.popitem()
if (dict != type(v)):
return {k:v, **flatten(d)}
else:
flat_kv = flatten(v)
for k1 in list(flat_kv.keys()):
flat_kv[k + '_' + k1] = flat_kv[k1]
del flat_kv[k1]
return {**flat_kv, **flatten(d)}
实际上,我最近写了一个名为cherrypicker的包来处理这种确切的事情,因为我必须经常这样做!
我认为下面的代码会给你你想要的东西:
from cherrypicker import CherryPicker
dct = {
'a': 1,
'c': {
'a': 2,
'b': {
'x': 5,
'y' : 10
}
},
'd': [1, 2, 3]
}
picker = CherryPicker(dct)
picker.flatten().get()
您可以使用以下方法安装软件包:
pip install cherrypicker
...在https://cherrypicker.readthedocs.io上有更多的文档和指导。
其他方法可能更快,但这个包的优先级是使这些任务变得容易。如果你确实有一个很大的对象列表要扁平化,你也可以告诉CherryPicker使用并行处理来加快速度。
基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。
import collections
def flatten(d, parent_key='', sep='_'):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(flatten(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。
这不完全是OP所要求的,但很多人都来这里寻找方法来平坦现实世界的嵌套JSON数据,这些数据可以有嵌套的键值JSON对象和数组,数组内的JSON对象等等。JSON不包括元组,所以我们不必担心这些。
我找到了@roneo对@Imran发布的答案的列表包含评论的实现:
https://github.com/ScriptSmith/socialreaper/blob/master/socialreaper/tools.py#L8
import collections
def flatten(dictionary, parent_key=False, separator='.'):
"""
Turn a nested dictionary into a flattened dictionary
:param dictionary: The dictionary to flatten
:param parent_key: The string to prepend to dictionary's keys
:param separator: The string used to separate flattened keys
:return: A flattened dictionary
"""
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
测试:
flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3] })
>> {'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd.0': 1, 'd.1': 2, 'd.2': 3}
这做的工作,我需要做:我扔任何复杂的json在这,它为我扁平化。
所有学分发送至https://github.com/ScriptSmith。