假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
当前回答
简单的函数来平嵌套字典。对于Python 3,用.items()替换.iteritems()
def flatten_dict(init_dict):
res_dict = {}
if type(init_dict) is not dict:
return res_dict
for k, v in init_dict.iteritems():
if type(v) == dict:
res_dict.update(flatten_dict(v))
else:
res_dict[k] = v
return res_dict
这个想法/要求是: 获取不保留父键的平面字典。
用法示例:
dd = {'a': 3,
'b': {'c': 4, 'd': 5},
'e': {'f':
{'g': 1, 'h': 2}
},
'i': 9,
}
flatten_dict(dd)
>> {'a': 3, 'c': 4, 'd': 5, 'g': 1, 'h': 2, 'i': 9}
保留父密钥也很简单。
其他回答
这里有一个使用堆栈的解决方案。没有递归。
def flatten_nested_dict(nested):
stack = list(nested.items())
ans = {}
while stack:
key, val = stack.pop()
if isinstance(val, dict):
for sub_key, sub_val in val.items():
stack.append((f"{key}_{sub_key}", sub_val))
else:
ans[key] = val
return ans
我尝试了本页上的一些解决方案-虽然不是全部-但我尝试的那些都无法处理dict的嵌套列表。
考虑这样一个词典:
d = {
'owner': {
'name': {'first_name': 'Steven', 'last_name': 'Smith'},
'lottery_nums': [1, 2, 3, 'four', '11', None],
'address': {},
'tuple': (1, 2, 'three'),
'tuple_with_dict': (1, 2, 'three', {'is_valid': False}),
'set': {1, 2, 3, 4, 'five'},
'children': [
{'name': {'first_name': 'Jessica',
'last_name': 'Smith', },
'children': []
},
{'name': {'first_name': 'George',
'last_name': 'Smith'},
'children': []
}
]
}
}
以下是我的临时解决方案:
def flatten_dict(input_node: dict, key_: str = '', output_dict: dict = {}):
if isinstance(input_node, dict):
for key, val in input_node.items():
new_key = f"{key_}.{key}" if key_ else f"{key}"
flatten_dict(val, new_key, output_dict)
elif isinstance(input_node, list):
for idx, item in enumerate(input_node):
flatten_dict(item, f"{key_}.{idx}", output_dict)
else:
output_dict[key_] = input_node
return output_dict
生产:
{
owner.name.first_name: Steven,
owner.name.last_name: Smith,
owner.lottery_nums.0: 1,
owner.lottery_nums.1: 2,
owner.lottery_nums.2: 3,
owner.lottery_nums.3: four,
owner.lottery_nums.4: 11,
owner.lottery_nums.5: None,
owner.tuple: (1, 2, 'three'),
owner.tuple_with_dict: (1, 2, 'three', {'is_valid': False}),
owner.set: {1, 2, 3, 4, 'five'},
owner.children.0.name.first_name: Jessica,
owner.children.0.name.last_name: Smith,
owner.children.1.name.first_name: George,
owner.children.1.name.last_name: Smith,
}
一个临时的解决方案,但并不完美。 注意:
它不保留空字典,例如地址:{}k/v对。 它不会将嵌套元组中的字典平铺——尽管使用python元组类似于列表的事实很容易添加它。
这并不局限于字典,而是实现.items()的每个映射类型。进一步列表更快,因为它避免了if条件。尽管如此,功劳还是归于伊姆兰:
def flatten(d, parent_key=''):
items = []
for k, v in d.items():
try:
items.extend(flatten(v, '%s%s_' % (parent_key, k)).items())
except AttributeError:
items.append(('%s%s' % (parent_key, k), v))
return dict(items)
这里有一个优雅的、就地替换的算法。使用Python 2.7和Python 3.5进行测试。使用点字符作为分隔符。
def flatten_json(json):
if type(json) == dict:
for k, v in list(json.items()):
if type(v) == dict:
flatten_json(v)
json.pop(k)
for k2, v2 in v.items():
json[k+"."+k2] = v2
例子:
d = {'a': {'b': 'c'}}
flatten_json(d)
print(d)
unflatten_json(d)
print(d)
输出:
{'a.b': 'c'}
{'a': {'b': 'c'}}
我在这里发布了这段代码以及匹配的unflat_json函数。
这一变化扁平化嵌套字典,压缩键与max_level和自定义减速器。
def flatten(d, max_level=None, reducer='tuple'):
if reducer == 'tuple':
reducer_seed = tuple()
reducer_func = lambda x, y: (*x, y)
else:
raise ValueError(f'Unknown reducer: {reducer}')
def impl(d, pref, level):
return reduce(
lambda new_d, kv:
(max_level is None or level < max_level)
and isinstance(kv[1], dict)
and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
or {**new_d, reducer_func(pref, kv[0]): kv[1]},
d.items(),
{}
)
return impl(d, reducer_seed, 0)