我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

当我第一次看您的代码时,这很难说是一个公平的比较;我还以为你不是在比较苹果和苹果。所以我想,让构造函数和析构函数在所有测试中都被调用;然后比较。

const size_t dimension = 1000;

void UseArray() {
    TestTimer t("UseArray");
    for(size_t j = 0; j < dimension; ++j) {
        Pixel* pixels = new Pixel[dimension * dimension];
        for(size_t i = 0 ; i < dimension * dimension; ++i) {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = (unsigned char) (i % 255);
        }
        delete[] pixels;
    }
}

void UseVector() {
    TestTimer t("UseVector");
    for(size_t j = 0; j < dimension; ++j) {
        std::vector<Pixel> pixels(dimension * dimension);
        for(size_t i = 0; i < dimension * dimension; ++i) {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = (unsigned char) (i % 255);
        }
    }
}

int main() {
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();

    return 0;
}

我的想法是,在这样的设置下,它们应该是完全相同的。事实证明,我错了。

UseArray completed in 3.06 seconds
UseVector completed in 4.087 seconds
The whole thing completed in 10.14 seconds

那么为什么会出现30%的性能损失呢?STL的所有内容都在头文件中,因此编译器应该能够理解所需的所有内容。

我的想法是,它是在循环如何初始化默认构造函数的所有值。所以我做了一个测试:

class Tester {
public:
    static int count;
    static int count2;
    Tester() { count++; }
    Tester(const Tester&) { count2++; }
};
int Tester::count = 0;
int Tester::count2 = 0;

int main() {
    std::vector<Tester> myvec(300);
    printf("Default Constructed: %i\nCopy Constructed: %i\n", Tester::count, Tester::count2);

    return 0;
}

结果如我所料:

Default Constructed: 1
Copy Constructed: 300

这显然是减速的根源,因为vector使用复制构造函数从默认构造的对象初始化元素。

这意味着,以下伪操作顺序发生在向量的构造过程中:

Pixel pixel;
for (auto i = 0; i < N; ++i) vector[i] = pixel;

由于编译器创建了隐式复制构造函数,扩展为:

Pixel pixel;
for (auto i = 0; i < N; ++i) {
    vector[i].r = pixel.r;
    vector[i].g = pixel.g;
    vector[i].b = pixel.b;
}

所以默认像素保持未初始化,而其余的初始化使用默认像素的未初始化值。

与New[]/Delete[]相比:

int main() {
    Tester* myvec = new Tester[300];

    printf("Default Constructed: %i\nCopy Constructed:%i\n", Tester::count, Tester::count2);

    delete[] myvec;

    return 0;
}

Default Constructed: 300
Copy Constructed: 0

它们都保留了未初始化的值,并且没有对序列进行两次迭代。

有了这些信息,我们如何进行测试呢?让我们试着重写隐式复制构造函数。

Pixel(const Pixel&) {}

结果呢?

UseArray completed in 2.617 seconds
UseVector completed in 2.682 seconds
The whole thing completed in 5.301 seconds

总而言之,如果你经常制作数百个向量:重新考虑你的算法。

在任何情况下,STL实现都不会因为某些未知的原因而变慢,它只是完全按照你的要求去做;希望你能明白。

其他回答

使用以下方法:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseArray完成用时2.196秒 UseVector在4.412秒内完成 UseVectorPushBack在8.017秒内完成 全程用时14.626秒

数组的速度是向量的两倍。

但在更详细地查看代码后,这是预期的;当你遍历向量两次,只遍历数组一次时。注意:当你调整vector的size()时,你不仅是在分配内存,而且还在遍历vector并调用每个成员的构造函数。

稍微重新排列代码,使vector只初始化每个对象一次:

 std::vector<Pixel>  pixels(dimensions * dimensions, Pixel(255,0,0));

现在再做一次同样的计时:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseVector在2.216秒内完成

vector现在的性能只比数组差一点点。在我看来,这种差异是微不足道的,可能是由一大堆与测试无关的事情造成的。

我也会考虑到,你没有正确初始化/销毁像素对象在UseArrray()方法的构造函数/析构函数都没有被调用(这可能不是这个简单的类的问题,但任何稍微复杂(即指针或指针成员)将导致问题。

顺便说一下,你在使用vector的类中看到的减速也发生在标准类型中,比如int。这是一个多线程代码:

#include <iostream>
#include <cstdio>
#include <map>
#include <string>
#include <typeinfo>
#include <vector>
#include <pthread.h>
#include <sstream>
#include <fstream>
using namespace std;

//pthread_mutex_t map_mutex=PTHREAD_MUTEX_INITIALIZER;

long long num=500000000;
int procs=1;

struct iterate
{
    int id;
    int num;
    void * member;
    iterate(int a, int b, void *c) : id(a), num(b), member(c) {}
};

//fill out viterate and piterate
void * viterate(void * input)
{
    printf("am in viterate\n");
    iterate * info=static_cast<iterate *> (input);
    // reproduce member type
    vector<int> test= *static_cast<vector<int>*> (info->member);
    for (int i=info->id; i<test.size(); i+=info->num)
    {
        //printf("am in viterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

void * piterate(void * input)
{
    printf("am in piterate\n");
    iterate * info=static_cast<iterate *> (input);;
    int * test=static_cast<int *> (info->member);
    for (int i=info->id; i<num; i+=info->num) {
        //printf("am in piterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

int main()
{
    cout<<"producing vector of size "<<num<<endl;
    vector<int> vtest(num);
    cout<<"produced  a vector of size "<<vtest.size()<<endl;
    pthread_t thread[procs];

    iterate** it=new iterate*[procs];
    int ans;
    void *status;

    cout<<"begining to thread through the vector\n";
    for (int i=0; i<procs; i++) {
        it[i]=new iterate(i, procs, (void *) &vtest);
    //  ans=pthread_create(&thread[i],NULL,viterate, (void *) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the vector";
    //reuse the iterate structures

    cout<<"producing a pointer with size "<<num<<endl;
    int * pint=new int[num];
    cout<<"produced a pointer with size "<<num<<endl;

    cout<<"begining to thread through the pointer\n";
    for (int i=0; i<procs; i++) {
        it[i]->member=&pint;
        ans=pthread_create(&thread[i], NULL, piterate, (void*) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the pointer\n";

    //delete structure array for iterate
    for (int i=0; i<procs; i++) {
        delete it[i];
    }
    delete [] it;

    //delete pointer
    delete [] pint;

    cout<<"end of the program"<<endl;
    return 0;
}

代码中的行为表明vector的实例化是代码中最长的部分。一旦你通过瓶颈。其余的代码运行得非常快。无论在多少个线程上运行,这都是正确的。

顺便说一下,忽略那些疯狂的包含数。我一直在使用这段代码来测试一个项目的东西,所以包含的数量不断增长。

尝试禁用检查迭代器并在发布模式下构建。您应该不会看到太大的性能差异。

Martin York的回答让我很困扰,因为他似乎试图掩盖初始化问题。但他将冗余的默认构造确定为性能问题的根源是正确的。

[编辑:Martin的回答不再建议更改默认构造函数。]

对于眼前的问题,你当然可以调用2参数版本的向量<Pixel> ctor:

std::vector<Pixel> pixels(dimension * dimension, Pixel(255, 0, 0));

如果你想用一个常数值初始化,这是一种常见的情况。但更普遍的问题是:如何有效地初始化比常数值更复杂的东西?

为此,您可以使用back_insert_iterator,这是一个迭代器适配器。这里有一个int类型的向量的例子,尽管一般的思想也适用于像素:

#include <iterator>
// Simple functor return a list of squares: 1, 4, 9, 16...
struct squares {
    squares() { i = 0; }
    int operator()() const { ++i; return i * i; }

private:
    int i;
};

...

std::vector<int> v;
v.reserve(someSize);     // To make insertions efficient
std::generate_n(std::back_inserter(v), someSize, squares());

或者,您可以使用copy()或transform()来代替generate_n()。

缺点是,构造初始值的逻辑需要移动到一个单独的类中,这比将其放在原位更不方便(尽管c++ 1x中的lambdas使这更好)。此外,我希望这仍然不会像基于malloc()的非stl版本那样快,但我希望它会接近,因为它只对每个元素进行一次构造。

我做了一些长期以来一直想做的广泛测试。不妨分享一下。

这是我的双启动机i7-3770, 16GB Ram, x86_64, Windows 8.1和Ubuntu 16.04。更多信息和结论,备注如下。测试了MSVS 2017和g++(在Windows和Linux上)。

测试程序

#include <iostream>
#include <chrono>
//#include <algorithm>
#include <array>
#include <locale>
#include <vector>
#include <queue>
#include <deque>

// Note: total size of array must not exceed 0x7fffffff B = 2,147,483,647B
//  which means that largest int array size is 536,870,911
// Also image size cannot be larger than 80,000,000B
constexpr int long g_size = 100000;
int g_A[g_size];


int main()
{
    std::locale loc("");
    std::cout.imbue(loc);
    constexpr int long size = 100000;  // largest array stack size

    // stack allocated c array
    std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
    int A[size];
    for (int i = 0; i < size; i++)
        A[i] = i;

    auto duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style stack array size=" << sizeof(A) << "B\n\n";

    // global stack c array
    start = std::chrono::steady_clock::now();
    for (int i = 0; i < g_size; i++)
        g_A[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "global c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "global c-style stack array size=" << sizeof(g_A) << "B\n\n";

    // raw c array heap array
    start = std::chrono::steady_clock::now();
    int* AA = new int[size];    // bad_alloc() if it goes higher than 1,000,000,000
    for (int i = 0; i < size; i++)
        AA[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style heap array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style heap array size=" << sizeof(AA) << "B\n\n";
    delete[] AA;

    // std::array<>
    start = std::chrono::steady_clock::now();
    std::array<int, size> AAA;
    for (int i = 0; i < size; i++)
        AAA[i] = i;
    //std::sort(AAA.begin(), AAA.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::array size=" << sizeof(AAA) << "B\n\n";

    // std::vector<>
    start = std::chrono::steady_clock::now();
    std::vector<int> v;
    for (int i = 0; i < size; i++)
        v.push_back(i);
    //std::sort(v.begin(), v.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::vector duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::vector size=" << v.size() * sizeof(v.back()) << "B\n\n";

    // std::deque<>
    start = std::chrono::steady_clock::now();
    std::deque<int> dq;
    for (int i = 0; i < size; i++)
        dq.push_back(i);
    //std::sort(dq.begin(), dq.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::deque duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::deque size=" << dq.size() * sizeof(dq.back()) << "B\n\n";

    // std::queue<>
    start = std::chrono::steady_clock::now();
    std::queue<int> q;
    for (int i = 0; i < size; i++)
        q.push(i);

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::queue duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::queue size=" << q.size() * sizeof(q.front()) << "B\n\n";
}

结果

//////////////////////////////////////////////////////////////////////////////////////////
// with MSVS 2017:
// >> cl /std:c++14 /Wall -O2 array_bench.cpp
//
// c-style stack array duration=0.15ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.130ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.90ms
// c-style heap array size=4B
//
// std::array duration=0.20ms
// std::array size=400,000B
//
// std::vector duration=0.544ms
// std::vector size=400,000B
//
// std::deque duration=1.375ms
// std::deque size=400,000B
//
// std::queue duration=1.491ms
// std::queue size=400,000B
//
//////////////////////////////////////////////////////////////////////////////////////////
//
// with g++ version:
//      - (tdm64-1) 5.1.0 on Windows
//      - (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 on Ubuntu 16.04
// >> g++ -std=c++14 -Wall -march=native -O2 array_bench.cpp -o array_bench
//
// c-style stack array duration=0ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.124ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.648ms
// c-style heap array size=8B
//
// std::array duration=1ms
// std::array size=400,000B
//
// std::vector duration=0.402ms
// std::vector size=400,000B
//
// std::deque duration=0.234ms
// std::deque size=400,000B
//
// std::queue duration=0.304ms
// std::queue size=400,000
//
//////////////////////////////////////////////////////////////////////////////////////////

笔记

平均10次组装。 我最初也使用std::sort()执行测试(您可以看到它被注释掉了),但后来删除了它们,因为没有显著的相对差异。

我的结论和评论

notice how global c-style array takes almost as much time as the heap c-style array Out of all tests I noticed a remarkable stability in std::array's time variations between consecutive runs, while others especially std:: data structs varied wildly in comparison O3 optimization didn't show any noteworthy time differences Removing optimization on Windows cl (no -O2) and on g++ (Win/Linux no -O2, no -march=native) increases times SIGNIFICANTLY. Particularly for std::data structs. Overall higher times on MSVS than g++, but std::array and c-style arrays faster on Windows without optimization g++ produces faster code than microsoft's compiler (apparently it runs faster even on Windows).

判决

当然,这是用于优化构建的代码。既然问题是关于std::vector,那么是的,它是!比普通数组(优化/未优化)慢。但是当您进行基准测试时,您自然希望生成优化的代码。

对我来说,这个节目的明星是std::array。