我知道这是一个非常基本的问题,但出于某种原因,我找不到答案。我怎样才能得到在python熊猫系列的某些元素的索引?(第一种情况就足够了)

例如,我想要这样的东西:

import pandas as pd
myseries = pd.Series([1,4,0,7,5], index=[0,1,2,3,4])
print myseries.find(7) # should output 3

当然,可以用循环来定义这样的方法:

def find(s, el):
    for i in s.index:
        if s[i] == el: 
            return i
    return None

print find(myseries, 7)

但我想应该有更好的办法。是吗?


当前回答

df。索引方法将帮助您找到确切的行号

my_fl2=(df['ConvertedCompYearly'] == 45241312 )
print (df[my_fl2].index)

   
Name: ConvertedCompYearly, dtype: float64
Int64Index([66910], dtype='int64')

其他回答

另一种还没有提到的方法是tolist方法:

myseries.tolist().index(7)

应该返回正确的索引,假设该值存在于Series中。

>>> myseries[myseries == 7]
3    7
dtype: int64
>>> myseries[myseries == 7].index[0]
3

虽然我承认应该有更好的方法来做到这一点,但这至少避免了迭代和遍历对象,并将其移动到C级别。

通常你的价值会出现在多个指标上:

>>> myseries = pd.Series([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1])
>>> myseries.index[myseries == 1]
Int64Index([3, 4, 5, 6, 10, 11], dtype='int64')

这里所有的答案都让我印象深刻。这不是一个新的答案,只是试图总结所有这些方法的时机。我考虑了一个有25个元素的序列的情况,并假设一般情况下,索引可以包含任何值,并且您希望索引值对应于序列末尾的搜索值。

以下是在2012年的Mac Mini上使用Python 3.9.10和Pandas版本1.4.0进行的速度测试。

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: data = [406400, 203200, 101600, 76100, 50800, 25400, 19050, 12700, 950
   ...: 0, 6700, 4750, 3350, 2360, 1700, 1180, 850, 600, 425, 300, 212, 150, 1
   ...: 06, 75, 53, 38]

In [4]: myseries = pd.Series(data, index=range(1,26))

In [5]: assert(myseries[21] == 150)

In [6]: %timeit myseries[myseries == 150].index[0]
179 µs ± 891 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [7]: %timeit myseries[myseries == 150].first_valid_index()
205 µs ± 3.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [8]: %timeit myseries.where(myseries == 150).first_valid_index()
597 µs ± 4.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [9]: %timeit myseries.index[np.where(myseries == 150)[0][0]]
110 µs ± 872 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [10]: %timeit pd.Series(myseries.index, index=myseries)[150]
125 µs ± 2.56 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [11]: %timeit myseries.index[pd.Index(myseries).get_loc(150)]
49.5 µs ± 814 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [12]: %timeit myseries.index[list(myseries).index(150)]
7.75 µs ± 36.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [13]: %timeit myseries.index[myseries.tolist().index(150)]
2.55 µs ± 27.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [14]: %timeit dict(zip(myseries.values, myseries.index))[150]
9.89 µs ± 79.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [15]: %timeit {v: k for k, v in myseries.items()}[150]
9.99 µs ± 67 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

@Jeff的回答似乎是最快的——尽管它不处理副本。

更正:抱歉,我错过了一个,@Alex Spangher使用列表索引方法的解决方案是目前为止最快的。

更新:添加了@EliadL的答案。

希望这能有所帮助。

令人惊讶的是,这么简单的操作需要如此复杂的解决方案,许多解决方案如此缓慢。在某些情况下,需要超过半毫秒才能在25的序列中找到一个值。

2022-02-18更新

使用最新的Pandas版本和Python 3.9更新了所有计时。即使在较旧的计算机上,与以前的测试(版本0.25.3)相比,所有的计时都显著减少了(10%到70%)。

增加:增加了两个更多的方法利用字典。

这是我能找到的最原生和可扩展的方法:

>>> myindex = pd.Series(myseries.index, index=myseries)

>>> myindex[7]
3

>>> myindex[[7, 5, 7]]
7    3
5    4
7    3
dtype: int64