我知道这是一个非常基本的问题,但出于某种原因,我找不到答案。我怎样才能得到在python熊猫系列的某些元素的索引?(第一种情况就足够了)

例如,我想要这样的东西:

import pandas as pd
myseries = pd.Series([1,4,0,7,5], index=[0,1,2,3,4])
print myseries.find(7) # should output 3

当然,可以用循环来定义这样的方法:

def find(s, el):
    for i in s.index:
        if s[i] == el: 
            return i
    return None

print find(myseries, 7)

但我想应该有更好的办法。是吗?


当前回答

通常你的价值会出现在多个指标上:

>>> myseries = pd.Series([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1])
>>> myseries.index[myseries == 1]
Int64Index([3, 4, 5, 6, 10, 11], dtype='int64')

其他回答

转换为索引时,可以使用get_loc

In [1]: myseries = pd.Series([1,4,0,7,5], index=[0,1,2,3,4])

In [3]: Index(myseries).get_loc(7)
Out[3]: 3

In [4]: Index(myseries).get_loc(10)
KeyError: 10

重复处理

In [5]: Index([1,1,2,2,3,4]).get_loc(2)
Out[5]: slice(2, 4, None)

将返回一个布尔数组,如果不连续的返回

In [6]: Index([1,1,2,1,3,2,4]).get_loc(2)
Out[6]: array([False, False,  True, False, False,  True, False], dtype=bool)

内部使用哈希表,非常快

In [7]: s = Series(randint(0,10,10000))

In [9]: %timeit s[s == 5]
1000 loops, best of 3: 203 µs per loop

In [12]: i = Index(s)

In [13]: %timeit i.get_loc(5)
1000 loops, best of 3: 226 µs per loop

正如Viktor所指出的,创建索引有一个一次性的创建开销(当你实际对索引做一些事情时,例如is_unique)

In [2]: s = Series(randint(0,10,10000))

In [3]: %timeit Index(s)
100000 loops, best of 3: 9.6 µs per loop

In [4]: %timeit Index(s).is_unique
10000 loops, best of 3: 140 µs per loop

你可以使用Series.idxmax()

>>> import pandas as pd
>>> myseries = pd.Series([1,4,0,7,5], index=[0,1,2,3,4])
>>> myseries.idxmax()
3
>>> 

df。索引方法将帮助您找到确切的行号

my_fl2=(df['ConvertedCompYearly'] == 45241312 )
print (df[my_fl2].index)

   
Name: ConvertedCompYearly, dtype: float64
Int64Index([66910], dtype='int64')

另一种方法是:

s = pd.Series([1,3,0,7,5],index=[0,1,2,3,4])

list(s).index(7)

返回: 3.

在使用我正在使用的当前数据集进行的时间测试中(认为它是随机的):

[64]:    %timeit pd.Index(article_reference_df.asset_id).get_loc('100000003003614')
10000 loops, best of 3: 60.1 µs per loop

In [66]: %timeit article_reference_df.asset_id[article_reference_df.asset_id == '100000003003614'].index[0]
1000 loops, best of 3: 255 µs per loop


In [65]: %timeit list(article_reference_df.asset_id).index('100000003003614')
100000 loops, best of 3: 14.5 µs per loop

Pandas有内置的类Index和一个名为get_loc的函数。这个函数将返回

索引(元素索引) 切片(如果指定的数字是顺序的) 数组(如果数字在多个下标处,则为bool数组)

例子:

import pandas as pd

>>> mySer = pd.Series([1, 3, 8, 10, 13])
>>> pd.Index(mySer).get_loc(10)  # Returns index
3  # Index of 10 in series

>>> mySer = pd.Series([1, 3, 8, 10, 10, 10, 13])
>>> pd.Index(mySer).get_loc(10)  # Returns slice
slice(3, 6, None)  # 10 occurs at index 3 (included) to 6 (not included)


# If the data is not in sequence then it would return an array of bool's.
>>> mySer = pd.Series([1, 10, 3, 8, 10, 10, 10, 13, 10])
>>> pd.Index(mySer).get_loc(10)
array([False, True, False, False, True, True, False, True])

也有很多其他的选择,但我发现这对我来说很简单。