您知道是否有一个内置函数可以从任意对象构建字典吗?我想这样做:

>>> class Foo:
...     bar = 'hello'
...     baz = 'world'
...
>>> f = Foo()
>>> props(f)
{ 'bar' : 'hello', 'baz' : 'world' }

注意:它不应该包括方法。只有字段。


当前回答

在2021年,对于嵌套对象/dicts/json使用pydantic BaseModel -将嵌套dicts和嵌套json对象转换为python对象和json,反之亦然:

https://pydantic-docs.helpmanual.io/usage/models/

>>> class Foo(BaseModel):
...     count: int
...     size: float = None
... 
>>> 
>>> class Bar(BaseModel):
...     apple = 'x'
...     banana = 'y'
... 
>>> 
>>> class Spam(BaseModel):
...     foo: Foo
...     bars: List[Bar]
... 
>>> 
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])

对象to dict

>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}

对象转换为JSON

>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}

反对的词典

>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])

JSON到对象

>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])

其他回答

PYTHON 3:

class DateTimeDecoder(json.JSONDecoder):

   def __init__(self, *args, **kargs):
        JSONDecoder.__init__(self, object_hook=self.dict_to_object,
                         *args, **kargs)

   def dict_to_object(self, d):
       if '__type__' not in d:
          return d

       type = d.pop('__type__')
       try:
          dateobj = datetime(**d)
          return dateobj
       except:
          d['__type__'] = type
          return d

def json_default_format(value):
    try:
        if isinstance(value, datetime):
            return {
                '__type__': 'datetime',
                'year': value.year,
                'month': value.month,
                'day': value.day,
                'hour': value.hour,
                'minute': value.minute,
                'second': value.second,
                'microsecond': value.microsecond,
            }
        if isinstance(value, decimal.Decimal):
            return float(value)
        if isinstance(value, Enum):
            return value.name
        else:
            return vars(value)
    except Exception as e:
        raise ValueError

现在你可以在你自己的类中使用上面的代码:

class Foo():
  def toJSON(self):
        return json.loads(
            json.dumps(self, sort_keys=True, indent=4, separators=(',', ': '), default=json_default_format), cls=DateTimeDecoder)


Foo().toJSON() 

内置的dir会给你所有对象的属性,包括特殊的方法,如__str__, __dict__和一大堆你可能不想要的其他方法。但是你可以这样做:

>>> class Foo(object):
...     bar = 'hello'
...     baz = 'world'
...
>>> f = Foo()
>>> [name for name in dir(f) if not name.startswith('__')]
[ 'bar', 'baz' ]
>>> dict((name, getattr(f, name)) for name in dir(f) if not name.startswith('__')) 
{ 'bar': 'hello', 'baz': 'world' }

所以可以扩展它,只返回数据属性,而不返回方法,通过定义你的props函数:

import inspect

def props(obj):
    pr = {}
    for name in dir(obj):
        value = getattr(obj, name)
        if not name.startswith('__') and not inspect.ismethod(value):
            pr[name] = value
    return pr

我想我应该花点时间向您展示如何通过dict(obj)将对象转换为dict。

class A(object):
    d = '4'
    e = '5'
    f = '6'

    def __init__(self):
        self.a = '1'
        self.b = '2'
        self.c = '3'

    def __iter__(self):
        # first start by grabbing the Class items
        iters = dict((x,y) for x,y in A.__dict__.items() if x[:2] != '__')

        # then update the class items with the instance items
        iters.update(self.__dict__)

        # now 'yield' through the items
        for x,y in iters.items():
            yield x,y

a = A()
print(dict(a)) 
# prints "{'a': '1', 'c': '3', 'b': '2', 'e': '5', 'd': '4', 'f': '6'}"

这段代码的关键部分是__iter__函数。

正如注释所解释的,我们要做的第一件事是抓取Class项,并防止任何以'__'开头的内容。

一旦创建了字典,就可以使用update dict函数并传入实例__dict__。

这将为您提供一个完整的类+实例成员字典。现在剩下的就是遍历它们并产生返回值。

另外,如果你计划经常使用这个,你可以创建一个@iterable类装饰器。

def iterable(cls):
    def iterfn(self):
        iters = dict((x,y) for x,y in cls.__dict__.items() if x[:2] != '__')
        iters.update(self.__dict__)

        for x,y in iters.items():
            yield x,y

    cls.__iter__ = iterfn
    return cls

@iterable
class B(object):
    d = 'd'
    e = 'e'
    f = 'f'

    def __init__(self):
        self.a = 'a'
        self.b = 'b'
        self.c = 'c'

b = B()
print(dict(b))

使用vars(x)而不是x.__dict__实际上更python化。

Python 3.7+将于2023年发布

您可以将数据类装饰器添加到类中,并定义一个自定义JSON序列化器,然后是JSON。转储将工作(通过向cls提供自定义编码器)。

f=Foo()
json.dumps(f, cls=CustomJSONEncoder)

{"bar": "hello", "baz": "world", "modified": "2023-02-08T11:49:15.675837"}

可以很容易地修改定制JSON序列化器,使其与任何原生JSON不可序列化的类型兼容。

from datetime import datetime
import dataclasses
import json


@dataclasses.dataclass # <<-- add this decorator 
class Foo():
    """An example dataclass."""

    bar: str = "hello"
    baz: str = "world"
    modified: datetime = Column(DateTime(timezone=True), default=datetime.utcnow)


class CustomJSONEncoder(json.JSONEncoder): # <<-- Add this custom encoder 
    """Custom JSON encoder for the DB class."""

    def default(self, o):
        if dataclasses.is_dataclass(o): # this serializes anything dataclass can handle  
            return dataclasses.asdict(o)
        if isinstance(o, datetime): # this adds support for datetime
            return o.isoformat()
        return super().default(o)

为了进一步将其扩展到任何不可序列化的类型,在自定义编码器类中添加另一个if语句,返回可序列化的内容(例如str)。