我需要写一个加权版的random。选择(列表中的每个元素有不同的被选择的概率)。这是我想到的:

def weightedChoice(choices):
    """Like random.choice, but each element can have a different chance of
    being selected.

    choices can be any iterable containing iterables with two items each.
    Technically, they can have more than two items, the rest will just be
    ignored.  The first item is the thing being chosen, the second item is
    its weight.  The weights can be any numeric values, what matters is the
    relative differences between them.
    """
    space = {}
    current = 0
    for choice, weight in choices:
        if weight > 0:
            space[current] = choice
            current += weight
    rand = random.uniform(0, current)
    for key in sorted(space.keys() + [current]):
        if rand < key:
            return choice
        choice = space[key]
    return None

这个函数对我来说太复杂了,而且很丑。我希望这里的每个人都能提供一些改进的建议或其他方法。对我来说,效率没有代码的整洁和可读性重要。


当前回答

如果您的加权选项列表是相对静态的,并且您希望频繁采样,则可以执行一个O(N)预处理步骤,然后使用相关答案中的函数在O(1)中进行选择。

# run only when `choices` changes.
preprocessed_data = prep(weight for _,weight in choices)

# O(1) selection
value = choices[sample(preprocessed_data)][0]

其他回答

下面是使用numpy的另一个版本的weighted_choice。传入weights向量,它将返回一个由0组成的数组,其中包含一个1,表示所选择的bin。该代码默认只进行一次绘制,但您可以传入绘制的数量,并且将返回每个绘制的bin的计数。

如果权重向量的和不等于1,它将被规范化,使之等于1。

import numpy as np

def weighted_choice(weights, n=1):
    if np.sum(weights)!=1:
        weights = weights/np.sum(weights)

    draws = np.random.random_sample(size=n)

    weights = np.cumsum(weights)
    weights = np.insert(weights,0,0.0)

    counts = np.histogram(draws, bins=weights)
    return(counts[0])

如果你碰巧有Python 3,并且害怕安装numpy或编写自己的循环,你可以这样做:

import itertools, bisect, random

def weighted_choice(choices):
   weights = list(zip(*choices))[1]
   return choices[bisect.bisect(list(itertools.accumulate(weights)),
                                random.uniform(0, sum(weights)))][0]

因为你可以用一袋管道适配器做任何东西!尽管……我必须承认,尼德的回答虽然稍长一些,但比较容易理解。

我可能已经来不及提供任何有用的东西了,但这里有一个简单,简短,非常有效的片段:

def choose_index(probabilies):
    cmf = probabilies[0]
    choice = random.random()
    for k in xrange(len(probabilies)):
        if choice <= cmf:
            return k
        else:
            cmf += probabilies[k+1]

不需要排序你的概率或用你的cmf创建一个向量,它一旦找到它的选择就会终止。内存:O(1),时间:O(N),平均运行时间~ N/2。

如果你有权重,只需添加一行:

def choose_index(weights):
    probabilities = weights / sum(weights)
    cmf = probabilies[0]
    choice = random.random()
    for k in xrange(len(probabilies)):
        if choice <= cmf:
            return k
        else:
            cmf += probabilies[k+1]

一种方法是随机化所有权重的总和,然后使用这些值作为每个变量的极限点。以下是作为生成器的粗略实现。

def rand_weighted(weights):
    """
    Generator which uses the weights to generate a
    weighted random values
    """
    sum_weights = sum(weights.values())
    cum_weights = {}
    current_weight = 0
    for key, value in sorted(weights.iteritems()):
        current_weight += value
        cum_weights[key] = current_weight
    while True:
        sel = int(random.uniform(0, 1) * sum_weights)
        for key, value in sorted(cum_weights.iteritems()):
            if sel < value:
                break
        yield key

粗糙的,但可能足够:

import random
weighted_choice = lambda s : random.choice(sum(([v]*wt for v,wt in s),[]))

这有用吗?

# define choices and relative weights
choices = [("WHITE",90), ("RED",8), ("GREEN",2)]

# initialize tally dict
tally = dict.fromkeys(choices, 0)

# tally up 1000 weighted choices
for i in xrange(1000):
    tally[weighted_choice(choices)] += 1

print tally.items()

打印:

[('WHITE', 904), ('GREEN', 22), ('RED', 74)]

假设所有权重都是整数。它们的和不一定是100,我这么做只是为了让测试结果更容易理解。(如果权重是浮点数,则将它们都乘以10,直到所有权重>= 1。)

weights = [.6, .2, .001, .199]
while any(w < 1.0 for w in weights):
    weights = [w*10 for w in weights]
weights = map(int, weights)