如何将字典列表转换为数据帧?考虑到:

[{'points': 50, 'time': '5:00', 'year': 2010}, 
 {'points': 25, 'time': '6:00', 'month': "february"}, 
 {'points':90, 'time': '9:00', 'month': 'january'}, 
 {'points_h1':20, 'month': 'june'}]

我想把上面的变成一个数据框架:

      month  points  points_h1  time  year
0       NaN      50        NaN  5:00  2010
1  february      25        NaN  6:00   NaN
2   january      90        NaN  9:00   NaN
3      june     NaN         20   NaN   NaN

注意:列的顺序不重要。


当前回答

如果ds是dicts的列表:

df = pd.DataFrame(ds)

注意:这对嵌套数据不起作用。

其他回答

Pyhton3: 前面列出的大多数解决方案都有效。然而,在某些情况下,数据帧的row_number不需要,并且必须单独写入每一行(记录)。 下面的方法在这种情况下很有用。

import csv

my file= 'C:\Users\John\Desktop\export_dataframe.csv'

records_to_save = data2 #used as in the thread. 


colnames = list[records_to_save[0].keys()] 
# remember colnames is a list of all keys. All values are written corresponding
# to the keys and "None" is specified in case of missing value 

with open(myfile, 'w', newline="",encoding="utf-8") as f:
    writer = csv.writer(f)
    writer.writerow(colnames)
    for d in records_to_save:
        writer.writerow([d.get(r, "None") for r in colnames])

你也可以使用pd.DataFrame.from_dict(d) as:

In [8]: d = [{'points': 50, 'time': '5:00', 'year': 2010}, 
   ...: {'points': 25, 'time': '6:00', 'month': "february"}, 
   ...: {'points':90, 'time': '9:00', 'month': 'january'}, 
   ...: {'points_h1':20, 'month': 'june'}]

In [12]: pd.DataFrame.from_dict(d)
Out[12]: 
      month  points  points_h1  time    year
0       NaN    50.0        NaN  5:00  2010.0
1  february    25.0        NaN  6:00     NaN
2   january    90.0        NaN  9:00     NaN
3      june     NaN       20.0   NaN     NaN

在pandas 16.2中,我必须执行pd. datafframe .from_records(d)才能使其工作。

我有下面的字典列表与datetime键和int值:

list = [{datetime.date(2022, 2, 10): 7}, {datetime.date(2022, 2, 11): 1}, {datetime.date(2022, 2, 11): 1}]

我有一个问题,将其转换为Dataframe与上面的方法,因为它创建了Dataframe与列的日期…

我的解决方案:

df = pd.DataFrame()
for i in list:
    temp_df = pd.DataFrame.from_dict(i, orient='index')
    df = df.append(temp_df)

我发现的最简单的方法是这样的:

dict_count = len(dict_list)
df = pd.DataFrame(dict_list[0], index=[0])
for i in range(1,dict_count-1):
    df = df.append(dict_list[i], ignore_index=True)