我有一个列表,我想通过项目的属性进行筛选。

以下哪个是首选(可读性,性能,其他原因)?

xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)

当前回答

我花了一些时间来熟悉高阶函数过滤器和映射。所以我习惯了他们,我实际上喜欢过滤器,因为它是明确的,它通过保持任何真实的过滤,我觉得很酷,我知道一些函数编程术语。

然后我读了这篇文章(Fluent Python Book):

映射和筛选函数仍然是内置的 在Python 3中,但是自从引入了列表推导式和generator ex‐ 压力没有那么重要。listcomp或genexp完成map和的工作 过滤器组合,但更可读。

现在我想,如果您可以使用已经广泛传播的习语(如列表推导)来实现它,那么为什么还要使用过滤器/映射的概念呢?此外,映射和过滤器是一种函数。在这种情况下,我更喜欢使用匿名函数lambdas。

最后,为了进行测试,我对两种方法(map和listComp)都进行了计时,我没有看到任何相关的速度差异,可以证明这是合理的。

from timeit import Timer

timeMap = Timer(lambda: list(map(lambda x: x*x, range(10**7))))
print(timeMap.timeit(number=100))

timeListComp = Timer(lambda:[(lambda x: x*x) for x in range(10**7)])
print(timeListComp.timeit(number=100))

#Map:                 166.95695265199174
#List Comprehension   177.97208347299602

其他回答

一般过滤器稍快,如果使用内置函数。

在您的情况下,我希望列表理解稍微快一些

这在Python中有点像宗教问题。尽管Guido考虑从Python 3中删除map、filter和reduce,但还是有足够的反对意见,最终只有reduce从内置迁移到functools.reduce。

就我个人而言,我发现列表推导式更容易阅读。从表达式[i for i in list if i.attribute == value]中发生的事情更加明确,因为所有的行为都在表面上,而不是在过滤器函数内部。

我不会太担心这两种方法之间的性能差异,因为它是微不足道的。我只会优化它,如果它被证明是你的应用程序的瓶颈,这是不太可能的。

此外,由于BDFL希望从语言中删除过滤器,那么肯定会自动使列表理解更python化;-)

一个重要的区别是,列表推导式将返回一个列表,而过滤器返回一个过滤器,你不能像操作列表一样操作它(即:在它上调用len,它不能与过滤器的返回一起工作)。

我自己的自学也让我遇到了类似的问题。

也就是说,如果有一种方法可以从过滤器获得结果列表,有点像在。net中执行lst时所做的那样。Where(i => i.something()). tolist(),我很想知道它。

编辑:这是Python 3的情况,而不是Python 2(见评论中的讨论)。

除了公认的答案之外,还有一种极端情况,即您应该使用过滤器而不是列表推导式。如果列表是不可哈希的,则不能使用列表推导式直接处理它。一个真实的例子是使用pyodbc从数据库读取结果。游标的fetchAll()结果是一个不可哈希的列表。在这种情况下,要直接对返回的结果进行操作,应该使用filter:

cursor.execute("SELECT * FROM TABLE1;")
data_from_db = cursor.fetchall()
processed_data = filter(lambda s: 'abc' in s.field1 or s.StartTime >= start_date_time, data_from_db) 

如果你在这里使用列表理解,你会得到错误:

TypeError:不可哈希类型:list

我想我只是在python 3中添加,filter()实际上是一个迭代器对象,所以你必须将你的filter方法调用传递给list(),以构建过滤后的列表。所以在python 2中:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = filter(lambda num: num % 2 == 0, lst_a)

列表b和c具有相同的值,并且在filter()等效的时间内完成[x for x in y if z]。然而,在3中,相同的代码将使列表c包含一个筛选器对象,而不是一个筛选过的列表。要在3中产生相同的值:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = list(filter(lambda num: num %2 == 0, lst_a))

问题是list()接受一个可迭代对象作为参数,并从该参数创建一个新列表。结果是,在python 3中以这种方式使用filter所花费的时间是[x for x in y if z]方法的两倍,因为你必须遍历filter()的输出以及原始列表。