用MySQL计算中位数最简单(希望不会太慢)的方法是什么?我已经使用AVG(x)来寻找平均值,但我很难找到一个简单的方法来计算中位数。现在,我将所有的行返回到PHP,进行排序,然后选择中间的行,但是肯定有一些简单的方法可以在一个MySQL查询中完成它。

示例数据:

id | val
--------
 1    4
 2    7
 3    2
 4    2
 5    9
 6    8
 7    3

对val排序得到2 2 3 4 7 8 9,因此中位数应该是4,而SELECT AVG(val) == 5。


当前回答

这些方法从同一个表中选择两次。如果源数据来自一个昂贵的查询,这是一种避免运行两次的方法:

select KEY_FIELD, AVG(VALUE_FIELD) MEDIAN_VALUE
from (
    select KEY_FIELD, VALUE_FIELD, RANKF
    , @rownumr := IF(@prevrowidr=KEY_FIELD,@rownumr+1,1) RANKR
    , @prevrowidr := KEY_FIELD
    FROM (
        SELECT KEY_FIELD, VALUE_FIELD, RANKF
        FROM (
            SELECT KEY_FIELD, VALUE_FIELD 
            , @rownumf := IF(@prevrowidf=KEY_FIELD,@rownumf+1,1) RANKF
            , @prevrowidf := KEY_FIELD     
            FROM (
                SELECT KEY_FIELD, VALUE_FIELD 
                FROM (
                    -- some expensive query
                )   B
                ORDER BY  KEY_FIELD, VALUE_FIELD
            ) C
            , (SELECT @rownumf := 1) t_rownum
            , (SELECT @prevrowidf := '*') t_previd
        ) D
        ORDER BY  KEY_FIELD, RANKF DESC
    ) E
    , (SELECT @rownumr := 1) t_rownum
    , (SELECT @prevrowidr := '*') t_previd
) F
WHERE RANKF-RANKR BETWEEN -1 and 1
GROUP BY KEY_FIELD

其他回答

知道确切的行数,你可以使用这个查询:

SELECT <value> AS VAL FROM <table> ORDER BY VAL LIMIT 1 OFFSET <half>

Where <half> = ceiling(<size> / 2.0) - 1

这是我的办法。当然,你可以把它放到一个过程中:-)

SET @median_counter = (SELECT FLOOR(COUNT(*)/2) - 1 AS `median_counter` FROM `data`);

SET @median = CONCAT('SELECT `val` FROM `data` ORDER BY `val` LIMIT ', @median_counter, ', 1');

PREPARE median FROM @median;

EXECUTE median;

你可以避免变量@median_counter,如果你替换它:

SET @median = CONCAT( 'SELECT `val` FROM `data` ORDER BY `val` LIMIT ',
                      (SELECT FLOOR(COUNT(*)/2) - 1 AS `median_counter` FROM `data`),
                      ', 1'
                    );

PREPARE median FROM @median;

EXECUTE median;

我刚刚在网上的评论中找到了另一个答案:

对于几乎所有SQL中的中位数: SELECT x.val from data x, data y GROUP BY x.val 总和(符号(1-SIGN (y.val-x.val))) = (COUNT (*) + 1) / 2

确保列有良好的索引,并且索引用于筛选和排序。与解释计划核对。

select count(*) from table --find the number of rows

计算“中值”行号。可能使用:median_row = floor(count / 2)。

然后把它从列表中挑出来:

select val from table order by val asc limit median_row,1

这将返回您想要的值的一行。

一个简单的方法来计算中位数在MySQL

set @ct := (select count(1) from station);
set @row := 0;

select avg(a.val) as median from 
(select * from  table order by val) a
where (select @row := @row + 1)
between @ct/2.0 and @ct/2.0 +1;

ORACLE的简单解决方案:

SELECT ROUND(MEDIAN(Lat_N), 4) FROM Station;

简单的解决方案,理解MySQL:

select case MOD(count(lat_n),2) 
when 1 then (select round(S.LAT_N,4) from station S where (select count(Lat_N) from station where Lat_N < S.LAT_N ) = (select count(Lat_N) from station where Lat_N > S.LAT_N))
else (select round(AVG(S.LAT_N),4) from station S where 1 = (select count(Lat_N) from station where Lat_N < S.LAT_N ) - (select count(Lat_N) from station where Lat_N > S.LAT_N))
end from station;

解释

STATION是表名。LAT_N是具有数值的列名

假设站表中有101条记录(奇数)。这意味着如果表以asc或desc排序,则中位数是第51条记录。

In above query for every S.LAT_N of S table I am creating two tables. One for number of LAT_N values less than S.LAT_N and another for number of LAT_N values greater than S.LAT_N. Later I am comparing these two tables and if they are matched then I am selecting that S.LAT_N value. When I check for 51st records there are 50 values less than 51st record and there 50 records greater than 51st record. As you see, there are 50 records in both tables. So this is our answer. For every other record there are different number of records in two tables created for comparison. So, only 51st record meets the condition.

现在假设站表中有100条记录(偶数)。这意味着如果表以asc或desc排序,则中位数是第50条和第51条记录的平均值。

Same as odd logic I am creating two tables. One for number of LAT_N values less than S.LAT_N and another for number of LAT_N values greater than S.LAT_N. Later I am comparing these two tables and if their difference is equal to 1 then I am selecting that S.LAT_N value and find the average. When I check for 50th records there are 49 values less than 50th record and there 51 records greater than 50th record. As you see, there is difference of 1 record in both tables. So this(50th record) is our 1st record for average. Similarly, When I check for 51st records there are 50 values less than 51st record and there 49 records greater than 51st record. As you see, there is difference of 1 record in both tables. So this(51st record) is our 2nd record for average. For every other record there are different number of records in two tables created for comparison. So, only 50th and 51st records meet the condition.