Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?
当前回答
你可以使用scipy. nmage .uniform_filter1d:
import numpy as np
from scipy.ndimage import uniform_filter1d
N = 1000
x = np.random.random(100000)
y = uniform_filter1d(x, size=N)
uniform_filter1d:
给出具有相同numpy形状的输出(即点数) 允许多种方式处理边界,其中'reflect'是默认的,但在我的情况下,我更想要'nearest'
它也相当快(比np快近50倍)。卷积,比上述cumsum方法快2-5倍):
%timeit y1 = np.convolve(x, np.ones((N,))/N, mode='same')
100 loops, best of 3: 9.28 ms per loop
%timeit y2 = uniform_filter1d(x, size=N)
10000 loops, best of 3: 191 µs per loop
这里有3个函数可以让你比较不同实现的错误/速度:
from __future__ import division
import numpy as np
import scipy.ndimage as ndi
def running_mean_convolve(x, N):
return np.convolve(x, np.ones(N) / float(N), 'valid')
def running_mean_cumsum(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / float(N)
def running_mean_uniform_filter1d(x, N):
return ndi.uniform_filter1d(x, N, mode='constant', origin=-(N//2))[:-(N-1)]
其他回答
你可以用以下方法计算运行平均值:
import numpy as np
def runningMean(x, N):
y = np.zeros((len(x),))
for ctr in range(len(x)):
y[ctr] = np.sum(x[ctr:(ctr+N)])
return y/N
但是速度很慢。
幸运的是,numpy包含一个卷积函数,我们可以用它来加快速度。运行均值相当于将x与一个长度为N的向量进行卷积,其中所有元素都等于1/N。卷积的numpy实现包括起始瞬态,所以你必须删除前N-1点:
def runningMeanFast(x, N):
return np.convolve(x, np.ones((N,))/N)[(N-1):]
在我的机器上,快速版本要快20-30倍,这取决于输入向量的长度和平均窗口的大小。
请注意,卷积确实包括一个“相同”模式,它似乎应该解决开始的瞬态问题,但它在开始和结束之间分割。
我还没有检查这有多快,但你可以试试:
from collections import deque
cache = deque() # keep track of seen values
n = 10 # window size
A = xrange(100) # some dummy iterable
cum_sum = 0 # initialize cumulative sum
for t, val in enumerate(A, 1):
cache.append(val)
cum_sum += val
if t < n:
avg = cum_sum / float(t)
else: # if window is saturated,
cum_sum -= cache.popleft() # subtract oldest value
avg = cum_sum / float(n)
如果你选择自己生成,而不是使用现有的库,请注意浮点错误并尽量减少其影响:
class SumAccumulator:
def __init__(self):
self.values = [0]
self.count = 0
def add( self, val ):
self.values.append( val )
self.count = self.count + 1
i = self.count
while i & 0x01:
i = i >> 1
v0 = self.values.pop()
v1 = self.values.pop()
self.values.append( v0 + v1 )
def get_total(self):
return sum( reversed(self.values) )
def get_size( self ):
return self.count
如果所有的值都是大致相同的数量级,那么这将通过始终添加大致相似的数量级值来帮助保持精度。
另一种不使用numpy或pandas找到移动平均线的方法
import itertools
sample = [2, 6, 10, 8, 11, 10]
list(itertools.starmap(
lambda a,b: b/a,
enumerate(itertools.accumulate(sample), 1))
)
将打印[2.0,4.0,6.0,6.5,7.4,7.83333333333333333]
2.0 = (2)/1 4.0 is (2 + 6) / 2 6.0 = (2 + 6 + 10) / 3 .
移动平均过滤器怎么样?它也是一个单行程序,它的优点是,如果你需要矩形以外的东西,你可以很容易地操作窗口类型。一个n长的简单移动平均数组a:
lfilter(np.ones(N)/N, [1], a)[N:]
应用三角形窗口后:
lfilter(np.ones(N)*scipy.signal.triang(N)/N, [1], a)[N:]
注:我通常会在最后丢弃前N个样本作为假的,因此[N:],但这是没有必要的,只是个人选择的问题。
推荐文章
- 如何在matplotlib更新一个情节
- TypeError: ` NoneType `对象在Python中不可迭代
- 如何在Vim注释掉一个Python代码块
- python标准库中的装饰符(特别是@deprecated)
- 如何从外部访问本地Django web服务器
- 删除字符串的最后3个字符
- 在python中执行no-op的标准方法是什么?
- 如何从生成器构建numpy数组?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 数据类vs类型。NamedTuple主要用例
- 如何从macOS完全卸载蟒蛇
- 是否有可能键入提示一个lambda函数?
- 'dict'对象没有has_key属性
- 使用Pandas groupby连接来自几行的字符串
- Pandas:给定列的数据帧行之和