是否有任何快速命令或脚本来检查安装的CUDA版本?

我在安装目录下找到了4.0的手册,但我不确定它是否是实际安装的版本。


当前回答

使用以下命令检查Conda的CUDA安装:

conda list cudatoolkit

使用以下命令检查conda安装的CUDNN版本:

conda list cudnn

如果要通过CONDA安装/更新CUDA和CUDNN,请使用以下命令:

conda install -c anaconda cudatoolkit
conda install -c anaconda cudnn

或者,您可以使用以下命令检查CUDA安装:

nvidia-smi

OR

nvcc --version

如果您正在通过Anaconda包使用tensorflow-gpu(只需在控制台中打开Python,检查默认的Python在启动时是否显示Anaconda-Inc.,或者您可以运行哪个Python并检查位置),那么手动安装CUDA和CUDNN很可能无法工作。您将不得不通过conda进行更新。

如果您想手动安装CUDA、CUDNN或tensorflow gpu,可以查看此处的说明https://www.tensorflow.org/install/gpu

其他回答

安装CUDA后,可以通过以下方式检查版本:nvcc-V

我已经安装了5.0和5.5

Cuda编译工具5.5版V5.5,0

此命令适用于Windows和Ubuntu。

如果您在linux上运行:

dpkg -l | grep cuda

你可能会发现CUDA-Z很有用,这里是他们网站上的一句话:

“这个程序诞生于另一个Z-实用程序的模仿,例如CPU-Z和GPU-Z。CUDA-Z显示了CUDA支持的GPU和GPGPU的一些基本信息。它与nVIDIA Geforce、Quadro和Tesla卡以及ION芯片组一起工作。”

http://cuda-z.sourceforge.net/

在支持选项卡上,有源代码的URL:http://sourceforge.net/p/cuda-z/code/并且下载实际上不是安装程序,而是可执行文件本身(没有安装,所以这是“快速”的)。

此实用程序提供了大量信息,如果您需要了解它是如何派生的,可以查看源代码。您可以搜索与此类似的其他实用程序。

如果nvcc和nvidia-smi之间存在版本不匹配,则使用不同版本的cuda作为驱动程序和运行时环境。

为了确保使用相同版本的CUDA驱动程序,您需要做的是在系统路径上获取CUDA。

首先运行cuda所在的位置,找到cuda驱动程序的位置。

然后转到.bashrc并修改路径变量,并使用变量“LD_LIBRARY_path”设置搜索的目录优先顺序。

例如

$ whereis cuda
cuda: /usr/lib/cuda /usr/include/cuda.h /usr/local/cuda

CUDA安装在/usr/local/CUDA,现在我们需要将路径变量添加到.bashrc,如下所示:

vim  ~/.bashrc
export PATH="/usr/local/cuda/bin:${PATH}"

在该行之后,将目录搜索路径设置为:

export LD_LIBRARY_PATH="/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"

然后保存.bashrc文件。并将其刷新为:

$ source ~/.bashrc

这将确保您有nvcc-V和nvidia-smi使用相同版本的驱动程序。

您可以使用

nvcc -V

或者你可以使用

nvcc --version

或者您可以检查CUDA使用的位置

whereis cuda 

然后做

cat location/of/cuda/you/got/from/above/command