所以我遵循这个教程,但它似乎没有做任何事情。只是没有。它等待几秒钟并关闭程序。这段代码有什么问题?
import cv2
vidcap = cv2.VideoCapture('Compton.mp4')
success,image = vidcap.read()
count = 0
success = True
while success:
success,image = vidcap.read()
cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG file
if cv2.waitKey(10) == 27: # exit if Escape is hit
break
count += 1
此外,在评论中它说这限制帧到1000?为什么?
编辑:
我试着先做success = True,但没有帮助。它只创建了一个0字节的图像。
这是函数,它将大多数视频格式转换为视频中的帧数。它可以在Python3和OpenCV 3+上工作
import cv2
import time
import os
def video_to_frames(input_loc, output_loc):
"""Function to extract frames from input video file
and save them as separate frames in an output directory.
Args:
input_loc: Input video file.
output_loc: Output directory to save the frames.
Returns:
None
"""
try:
os.mkdir(output_loc)
except OSError:
pass
# Log the time
time_start = time.time()
# Start capturing the feed
cap = cv2.VideoCapture(input_loc)
# Find the number of frames
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
print ("Number of frames: ", video_length)
count = 0
print ("Converting video..\n")
# Start converting the video
while cap.isOpened():
# Extract the frame
ret, frame = cap.read()
if not ret:
continue
# Write the results back to output location.
cv2.imwrite(output_loc + "/%#05d.jpg" % (count+1), frame)
count = count + 1
# If there are no more frames left
if (count > (video_length-1)):
# Log the time again
time_end = time.time()
# Release the feed
cap.release()
# Print stats
print ("Done extracting frames.\n%d frames extracted" % count)
print ("It took %d seconds forconversion." % (time_end-time_start))
break
if __name__=="__main__":
input_loc = '/path/to/video/00009.MTS'
output_loc = '/path/to/output/frames/'
video_to_frames(input_loc, output_loc)
它支持。mts和普通文件,如。mp4和。avi。在.mts文件上尝试和测试。工作就像一个咒语。
在稍微不同的情况下扩展这个问题(@user2700065的回答),如果有人不想提取每一帧,但想每一秒提取一帧。所以1分钟的视频会有60帧(图像)。
import sys
import argparse
import cv2
print(cv2.__version__)
def extractImages(pathIn, pathOut):
count = 0
vidcap = cv2.VideoCapture(pathIn)
success,image = vidcap.read()
success = True
while success:
vidcap.set(cv2.CAP_PROP_POS_MSEC,(count*1000)) # added this line
success,image = vidcap.read()
print ('Read a new frame: ', success)
cv2.imwrite( pathOut + "\\frame%d.jpg" % count, image) # save frame as JPEG file
count = count + 1
if __name__=="__main__":
a = argparse.ArgumentParser()
a.add_argument("--pathIn", help="path to video")
a.add_argument("--pathOut", help="path to images")
args = a.parse_args()
print(args)
extractImages(args.pathIn, args.pathOut)
从这里下载这个视频,这样我们就有了相同的测试视频文件。确保mp4文件与python代码位于同一目录。然后确保从相同的目录运行python解释器。
然后修改代码,抛弃浪费时间的waitKey,也没有窗口,它不能捕捉键盘事件。同时,我们打印success值以确保它成功读取帧。
import cv2
vidcap = cv2.VideoCapture('big_buck_bunny_720p_5mb.mp4')
success,image = vidcap.read()
count = 0
while success:
cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG file
success,image = vidcap.read()
print('Read a new frame: ', success)
count += 1
这是怎么回事?
在对如何将帧转换为视频进行了大量研究后,我创建了这个函数,希望这能有所帮助。我们需要opencv来实现:
import cv2
import numpy as np
import os
def frames_to_video(inputpath,outputpath,fps):
image_array = []
files = [f for f in os.listdir(inputpath) if isfile(join(inputpath, f))]
files.sort(key = lambda x: int(x[5:-4]))
for i in range(len(files)):
img = cv2.imread(inputpath + files[i])
size = (img.shape[1],img.shape[0])
img = cv2.resize(img,size)
image_array.append(img)
fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
out = cv2.VideoWriter(outputpath,fourcc, fps, size)
for i in range(len(image_array)):
out.write(image_array[i])
out.release()
inputpath = 'folder path'
outpath = 'video file path/video.mp4'
fps = 29
frames_to_video(inputpath,outpath,fps)
修改fps(帧/秒)的值,输入文件夹路径和输出文件夹路径根据您自己的本地位置