是否有一种简单的方法可以用列表理解来扁平化一个可迭代对象列表,或者如果没有,你们都认为什么是扁平化这样一个浅列表的最好方法,平衡性能和可读性?

我尝试用一个嵌套的列表理解来扁平化这样一个列表,就像这样:

[image for image in menuitem for menuitem in list_of_menuitems]

但是我遇到了NameError的麻烦,因为名字‘menuitem’没有定义。在google和Stack Overflow上搜索之后,我用一个reduce语句得到了想要的结果:

reduce(list.__add__, map(lambda x: list(x), list_of_menuitems))

但是这个方法是相当不可读的,因为我需要调用list(x)因为x是Django QuerySet对象。

结论:

感谢每个为这个问题做出贡献的人。以下是我所学到的一份总结。我也把它变成了一个社区维基,以防其他人想要添加或纠正这些观察。

我原来的reduce语句是多余的,最好这样写:

>>> reduce(list.__add__, (list(mi) for mi in list_of_menuitems))

这是嵌套列表理解的正确语法(聪明的总结dF!)

>>> [image for mi in list_of_menuitems for image in mi]

但这两种方法都不如使用itertools.chain有效:

>>> from itertools import chain
>>> list(chain(*list_of_menuitems))

正如@cdleary所指出的那样,使用chain.from_iterable来避免*操作符魔法可能是更好的风格,就像这样:

>>> chain = itertools.chain.from_iterable([[1,2],[3],[5,89],[],[6]])
>>> print(list(chain))
>>> [1, 2, 3, 5, 89, 6]

当前回答

在Python 3.4中,你可以做到:

[*innerlist for innerlist in outer_list]

其他回答

你试过扁平化吗? 从matplotlib.cbook。Flatten (seq, scalarp=) ?

l=[[1,2,3],[4,5,6], [7], [8,9]]*33

run("list(flatten(l))")
         3732 function calls (3303 primitive calls) in 0.007 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
      429    0.001    0.000    0.001    0.000 cbook.py:475(iterable)
      429    0.002    0.000    0.003    0.000 cbook.py:484(is_string_like)
      429    0.002    0.000    0.006    0.000 cbook.py:565(is_scalar_or_string)
  727/298    0.001    0.000    0.007    0.000 cbook.py:605(flatten)
      429    0.000    0.000    0.001    0.000 core.py:5641(isMaskedArray)
      858    0.001    0.000    0.001    0.000 {isinstance}
      429    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*66

run("list(flatten(l))")
         7461 function calls (6603 primitive calls) in 0.007 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
      858    0.001    0.000    0.001    0.000 cbook.py:475(iterable)
      858    0.002    0.000    0.003    0.000 cbook.py:484(is_string_like)
      858    0.002    0.000    0.006    0.000 cbook.py:565(is_scalar_or_string)
 1453/595    0.001    0.000    0.007    0.000 cbook.py:605(flatten)
      858    0.000    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     1716    0.001    0.000    0.001    0.000 {isinstance}
      858    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*99

run("list(flatten(l))")
         11190 function calls (9903 primitive calls) in 0.010 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.010    0.010 <string>:1(<module>)
     1287    0.002    0.000    0.002    0.000 cbook.py:475(iterable)
     1287    0.003    0.000    0.004    0.000 cbook.py:484(is_string_like)
     1287    0.002    0.000    0.009    0.000 cbook.py:565(is_scalar_or_string)
 2179/892    0.001    0.000    0.010    0.000 cbook.py:605(flatten)
     1287    0.001    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     2574    0.001    0.000    0.001    0.000 {isinstance}
     1287    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*132

run("list(flatten(l))")
         14919 function calls (13203 primitive calls) in 0.013 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.013    0.013 <string>:1(<module>)
     1716    0.002    0.000    0.002    0.000 cbook.py:475(iterable)
     1716    0.004    0.000    0.006    0.000 cbook.py:484(is_string_like)
     1716    0.003    0.000    0.011    0.000 cbook.py:565(is_scalar_or_string)
2905/1189    0.002    0.000    0.013    0.000 cbook.py:605(flatten)
     1716    0.001    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     3432    0.001    0.000    0.001    0.000 {isinstance}
     1716    0.001    0.000    0.001    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler'

更新 这给了我另一个想法:

l=[[1,2,3],[4,5,6], [7], [8,9]]*33

run("flattenlist(l)")
         564 function calls (432 primitive calls) in 0.000 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    133/1    0.000    0.000    0.000    0.000 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.000    0.000 <string>:1(<module>)
      429    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*66

run("flattenlist(l)")
         1125 function calls (861 primitive calls) in 0.001 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    265/1    0.001    0.000    0.001    0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.001    0.001 <string>:1(<module>)
      858    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*99

run("flattenlist(l)")
         1686 function calls (1290 primitive calls) in 0.001 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    397/1    0.001    0.000    0.001    0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.001    0.001 <string>:1(<module>)
     1287    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*132

run("flattenlist(l)")
         2247 function calls (1719 primitive calls) in 0.002 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    529/1    0.001    0.000    0.002    0.002 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.002    0.002 <string>:1(<module>)
     1716    0.001    0.000    0.001    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*1320

run("flattenlist(l)")
         22443 function calls (17163 primitive calls) in 0.016 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   5281/1    0.011    0.000    0.016    0.016 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.016    0.016 <string>:1(<module>)
    17160    0.005    0.000    0.005    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

因此,为了测试当递归深入时它的有效性:深入多少?

l=[[1,2,3],[4,5,6], [7], [8,9]]*1320

new=[l]*33

run("flattenlist(new)")
         740589 function calls (566316 primitive calls) in 0.418 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 174274/1    0.281    0.000    0.417    0.417 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.001    0.001    0.418    0.418 <string>:1(<module>)
   566313    0.136    0.000    0.136    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*66

run("flattenlist(new)")
         1481175 function calls (1132629 primitive calls) in 0.809 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 348547/1    0.542    0.000    0.807    0.807 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.002    0.002    0.809    0.809 <string>:1(<module>)
  1132626    0.266    0.000    0.266    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*99

run("flattenlist(new)")
         2221761 function calls (1698942 primitive calls) in 1.211 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 522820/1    0.815    0.000    1.208    1.208 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.002    0.002    1.211    1.211 <string>:1(<module>)
  1698939    0.393    0.000    0.393    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*132

run("flattenlist(new)")
         2962347 function calls (2265255 primitive calls) in 1.630 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 697093/1    1.091    0.000    1.627    1.627 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.003    0.003    1.630    1.630 <string>:1(<module>)
  2265252    0.536    0.000    0.536    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*1320

run("flattenlist(new)")
         29623443 function calls (22652523 primitive calls) in 16.103 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
6970921/1   10.842    0.000   16.069   16.069 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.034    0.034   16.103   16.103 <string>:1(<module>)
 22652520    5.227    0.000    5.227    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

我打赌“扁平化”我将使用这个而不是matplobib很长很长一段时间,除非我想要一个yield生成器和快速的结果“扁平化”使用matplobib .cbook

这个,是快的。

这是代码

:

typ=(list,tuple)


def flattenlist(d):
    thelist = []
    for x in d:
        if not isinstance(x,typ):
            thelist += [x]
        else:
            thelist += flattenlist(x)
    return thelist

下面是使用列表推导式的正确解决方案(它们在这个问题中是落后的):

>>> join = lambda it: (y for x in it for y in x)
>>> list(join([[1,2],[3,4,5],[]]))
[1, 2, 3, 4, 5]

对你来说就是这样

[image for menuitem in list_of_menuitems for image in menuitem.image_set.all()]

或者你可以用join,然后说

join(menuitem.image_set.all() for menuitem in list_of_menuitems)

在这两种情况下,问题在于for循环的嵌套。

如果你要扁平化一个更复杂的列表与不可迭代元素或深度大于2,你可以使用以下函数:

def flat_list(list_to_flat):
    if not isinstance(list_to_flat, list):
        yield list_to_flat
    else:
        for item in list_to_flat:
            yield from flat_list(item)

它将返回一个生成器对象,您可以使用list()函数将其转换为列表。注意,yield from syntax可以从python3.3开始使用,但是可以使用显式迭代。 例子:

>>> a = [1, [2, 3], [1, [2, 3, [1, [2, 3]]]]]
>>> print(list(flat_list(a)))
[1, 2, 3, 1, 2, 3, 1, 2, 3]

如果您只是希望迭代一个扁平的数据结构版本,并且不需要可索引序列,请考虑itertools。连锁店和公司。

>>> list_of_menuitems = [['image00', 'image01'], ['image10'], []]
>>> import itertools
>>> chain = itertools.chain(*list_of_menuitems)
>>> print(list(chain))
['image00', 'image01', 'image10']

它可以在任何可迭代的东西上工作,其中应该包括Django的可迭代QuerySets,它似乎是你在问题中使用的。

编辑:无论如何,这可能和reduce一样好,因为reduce将有相同的开销将项复制到正在扩展的列表中。如果你在最后运行list(Chain), Chain只会引起这种(相同的)开销。

Meta-Edit:实际上,它的开销比问题提出的解决方案要少,因为当您使用临时列表扩展原始列表时,会丢弃您创建的临时列表。

编辑:正如J.F.塞巴斯蒂安说itertools.chain.from_iterable避免解包,你应该使用它来避免*魔术,但timeit应用程序显示可以忽略的性能差异。

Sum (list_of_lists,[])将使它变平。

l = [['image00', 'image01'], ['image10'], []]
print sum(l,[]) # prints ['image00', 'image01', 'image10']