是否可以为Java 8并行流指定一个自定义线程池?我到处都找不到。
假设我有一个服务器应用程序,我想使用并行流。但是这个应用程序很大,而且是多线程的,所以我想对它进行划分。我不希望在来自另一个模块的applicationblock任务的一个模块中运行缓慢的任务。
如果我不能为不同的模块使用不同的线程池,这意味着我不能在大多数实际情况下安全地使用并行流。
试试下面的例子。有一些CPU密集型任务在单独的线程中执行。
任务利用并行流。第一个任务中断,因此每一步花费1秒(通过线程睡眠模拟)。问题是其他线程卡住,等待中断的任务完成。这是一个虚构的例子,但是想象一下servlet应用程序和某人向共享fork连接池提交了一个长时间运行的任务。
public class ParallelTest {
public static void main(String[] args) throws InterruptedException {
ExecutorService es = Executors.newCachedThreadPool();
es.execute(() -> runTask(1000)); //incorrect task
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.execute(() -> runTask(0));
es.shutdown();
es.awaitTermination(60, TimeUnit.SECONDS);
}
private static void runTask(int delay) {
range(1, 1_000_000).parallel().filter(ParallelTest::isPrime).peek(i -> Utils.sleep(delay)).max()
.ifPresent(max -> System.out.println(Thread.currentThread() + " " + max));
}
public static boolean isPrime(long n) {
return n > 1 && rangeClosed(2, (long) sqrt(n)).noneMatch(divisor -> n % divisor == 0);
}
}
(目前)公认的答案有一部分是错误的。仅仅将并行流提交给专用的fork-join-pool是不够的。在这种情况下,流将使用该池的线程以及公共fork-join-pool甚至调用线程来处理流的工作负载,这似乎取决于公共fork-join池的大小。这种行为有点奇怪,但绝对不是必需的。
为了将工作完全限制在专用池中,你必须将它封装到一个CompletableFuture中:
final int parallelism = 4;
ForkJoinPool forkJoinPool = null;
try {
forkJoinPool = new ForkJoinPool(parallelism);
final List<Integer> primes = CompletableFuture.supplyAsync(() ->
// Parallel task here, for example
IntStream.range(1, 1_000_000).parallel()
.filter(PrimesPrint::isPrime)
.boxed().collect(Collectors.toList()),
forkJoinPool) // <- passes dedicated fork-join pool as executor
.join(); // <- Wait for result from forkJoinPool
System.out.println(primes);
} finally {
if (forkJoinPool != null) {
forkJoinPool.shutdown();
}
}
这段代码保留了在Java 8u352和Java 17.0.1上的forkJoinPool中的所有操作。
(目前)公认的答案有一部分是错误的。仅仅将并行流提交给专用的fork-join-pool是不够的。在这种情况下,流将使用该池的线程以及公共fork-join-pool甚至调用线程来处理流的工作负载,这似乎取决于公共fork-join池的大小。这种行为有点奇怪,但绝对不是必需的。
为了将工作完全限制在专用池中,你必须将它封装到一个CompletableFuture中:
final int parallelism = 4;
ForkJoinPool forkJoinPool = null;
try {
forkJoinPool = new ForkJoinPool(parallelism);
final List<Integer> primes = CompletableFuture.supplyAsync(() ->
// Parallel task here, for example
IntStream.range(1, 1_000_000).parallel()
.filter(PrimesPrint::isPrime)
.boxed().collect(Collectors.toList()),
forkJoinPool) // <- passes dedicated fork-join pool as executor
.join(); // <- Wait for result from forkJoinPool
System.out.println(primes);
} finally {
if (forkJoinPool != null) {
forkJoinPool.shutdown();
}
}
这段代码保留了在Java 8u352和Java 17.0.1上的forkJoinPool中的所有操作。
如果你不介意使用第三方库,使用cyclops-react,你可以在同一个管道中混合顺序流和并行流,并提供自定义ForkJoinPools。例如
ReactiveSeq.range(1, 1_000_000)
.foldParallel(new ForkJoinPool(10),
s->s.filter(i->true)
.peek(i->System.out.println("Thread " + Thread.currentThread().getId()))
.max(Comparator.naturalOrder()));
或者希望继续在顺序流中处理
ReactiveSeq.range(1, 1_000_000)
.parallel(new ForkJoinPool(10),
s->s.filter(i->true)
.peek(i->System.out.println("Thread " + Thread.currentThread().getId())))
.map(this::processSequentially)
.forEach(System.out::println);
[披露我是cyclops-react的主要开发者]