我很好奇为什么df[2]不被支持,而df。Ix[2]和df[2:3]都可以工作。
In [26]: df.ix[2]
Out[26]:
A 1.027680
B 1.514210
C -1.466963
D -0.162339
Name: 2000-01-03 00:00:00
In [27]: df[2:3]
Out[27]:
A B C D
2000-01-03 1.02768 1.51421 -1.466963 -0.162339
我希望df[2]与df[2:3]的工作方式相同,与Python索引约定一致。是否有设计原因不支持按单个整数索引行?
@HYRY,详见0.11的新文档
http://pandas.pydata.org/pandas-docs/stable/indexing.html
这里我们有了新的操作符,.iloc到显式只支持整数索引,.loc到显式只支持标签索引
例如,想象一下这个场景
In [1]: df = pd.DataFrame(np.random.rand(5,2),index=range(0,10,2),columns=list('AB'))
In [2]: df
Out[2]:
A B
0 1.068932 -0.794307
2 -0.470056 1.192211
4 -0.284561 0.756029
6 1.037563 -0.267820
8 -0.538478 -0.800654
In [5]: df.iloc[[2]]
Out[5]:
A B
4 -0.284561 0.756029
In [6]: df.loc[[2]]
Out[6]:
A B
2 -0.470056 1.192211
[]只对行进行切片(根据标签位置)
@HYRY,详见0.11的新文档
http://pandas.pydata.org/pandas-docs/stable/indexing.html
这里我们有了新的操作符,.iloc到显式只支持整数索引,.loc到显式只支持标签索引
例如,想象一下这个场景
In [1]: df = pd.DataFrame(np.random.rand(5,2),index=range(0,10,2),columns=list('AB'))
In [2]: df
Out[2]:
A B
0 1.068932 -0.794307
2 -0.470056 1.192211
4 -0.284561 0.756029
6 1.037563 -0.267820
8 -0.538478 -0.800654
In [5]: df.iloc[[2]]
Out[5]:
A B
4 -0.284561 0.756029
In [6]: df.loc[[2]]
Out[6]:
A B
2 -0.470056 1.192211
[]只对行进行切片(根据标签位置)