分治算法和动态规划算法的区别是什么?这两个术语有什么不同?我不明白它们之间的区别。

请举一个简单的例子来解释两者之间的区别,以及它们相似的理由。


当前回答

分而治之

分而治之的工作原理是将问题划分为子问题,递归地征服每个子问题,并将这些解决方案组合起来。

动态规划

动态规划是一种解决具有重叠子问题的问题的技术。每个子问题只解决一次,每个子问题的结果存储在一个表中(通常实现为数组或哈希表),以供将来引用。这些子解可以用来获得原始解,存储子问题解的技术称为记忆。

你可能会想到DP =递归+重用

理解差异的一个经典例子是,这两种方法都可以获得第n个斐波那契数。看看麻省理工学院的材料。


分而治之法

动态规划方法

其他回答

分而治之 它们分解成互不重叠的子问题 示例:阶乘数,即fact(n) = n*fact(n-1)

fact(5) = 5* fact(4) = 5 * (4 * fact(3))= 5 * 4 * (3 *fact(2))= 5 * 4 * 3 * 2 * (fact(1))

正如我们上面看到的,没有事实(x)是重复的,所以阶乘没有重叠的问题。

动态规划 他们分成了重叠的子问题 示例:斐波那契数列,即fib(n) = fib(n-1) + fib(n-2)

fib(5) = fib(4) + fib(3) = (fib(3)+fib(2)) + (fib(2)+fib(1))

如上所述,fib(4)和fib(3)都使用fib(2)。同样的,很多fib(x)被重复。这就是为什么斐波那契有重叠的子问题。

由于DP中子问题的重复,我们可以将这些结果保存在一个表中,节省了计算量。这被称为记忆

我假设你已经阅读了维基百科和其他关于这方面的学术资源,所以我不会重复使用任何信息。我还必须提醒,我不是计算机科学专家,但我将分享我对这些主题的理解……

动态规划

把问题分解成离散的子问题。Fibonacci序列的递归算法是动态规划的一个例子,因为它通过首先求解fib(n-1)来求解fib(n)。为了解决原来的问题,它解决了一个不同的问题。

分而治之

These algorithms typically solve similar pieces of the problem, and then put them together at the end. Mergesort is a classic example of divide and conquer. The main difference between this example and the Fibonacci example is that in a mergesort, the division can (theoretically) be arbitrary, and no matter how you slice it up, you are still merging and sorting. The same amount of work has to be done to mergesort the array, no matter how you divide it up. Solving for fib(52) requires more steps than solving for fib(2).

分而治之

分而治之的工作原理是将问题划分为子问题,递归地征服每个子问题,并将这些解决方案组合起来。

动态规划

动态规划是一种解决具有重叠子问题的问题的技术。每个子问题只解决一次,每个子问题的结果存储在一个表中(通常实现为数组或哈希表),以供将来引用。这些子解可以用来获得原始解,存储子问题解的技术称为记忆。

你可能会想到DP =递归+重用

理解差异的一个经典例子是,这两种方法都可以获得第n个斐波那契数。看看麻省理工学院的材料。


分而治之法

动态规划方法

分治法在每一级递归中涉及三个步骤:

把问题分成子问题。 通过递归求解子问题来克服子问题。 将子问题的解合并到原问题的解中。 这是一种自顶向下的方法。 它在子问题上做更多的工作,因此有更多的时间 消费。 如。斐波那契数列的第n项可以用O(2^n)个时间复杂度计算。

动态规划包括以下四个步骤: 1. 描述最优解的结构。 2. 递归地定义最优解的值。 3.计算最优解的值。 4. 从计算的信息构造一个最优解。

这是一种自底向上的方法。 由于我们使用了之前计算的值,而不是再次计算,因此比分治算法花费的时间更少。 如。斐波那契数列的第n项可以用O(n)个时间复杂度来计算。

为了便于理解,让我们将分而治之视为一种暴力解决方案,并将其优化视为动态规划。 注意:具有重叠子问题的分治算法只能用dp进行优化。

分而治之:

这一范式包括三个阶段:

把这个问题分成更小的子问题 征服,即解决这些较小的子问题 结合这些子问题的解,得到最终答案。

动态规划:

DP is an optimization of recursive solutions. The primary difference it makes is that it stores the solution to sub-problems, which can later be accessed during the process of finding solutions of the remaining sub-problems. This is done so that we don't have to calculate the solution to a sub-problem every time, rather we can simply look it up the computer memory to retrieve its value, given that it has been solved earlier. We can simply add this as our base case in recursion. For example, we are solving a problem through recursion, we can store the solutions to sub-problems in an array and access them by adding the relevant code in one of our base cases in the recursive method.

DP有两种实现方式:

考虑一个问题:求x的阶乘。

制表法:我们使用自底向上的方法,也就是从最小的数一直到x,来找到解。

伪代码:

 1. int array
 2. for int=1, i<=x, i++
 3. array[i] = array[i-1]*i

记忆法:我们使用自顶向下的方法,也就是说,我们把问题分解成更小的部分,然后解决它们,以得到最终的解决方案

伪代码:

 fac():
 1. int array
 2. if(x==0): return 1
 3. if(array[x]!=null): return array[x]
 4. return array[x] = x*fac(x-1)