何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

许多人使用return而不是yield,但在某些情况下yield能够更有效和更方便地开展工作。

以下是一个例子:yield绝对是最好的:

返回返回(在职能)

import random

def return_dates():
    dates = [] # With 'return' you need to create a list then return it
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        dates.append(date)
    return dates

收益率(在职能)

def yield_dates():
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        yield date # 'yield' makes a generator automatically which works
                   # in a similar way. This is much more efficient.

呼叫功能

dates_list = return_dates()
print(dates_list)
for i in dates_list:
    print(i)

dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
    print(i)

两种功能都做相同的事情,但yield使用三行而不是五行, 并有一个更少的变量需要担心 。

这是代码的结果:

Output

正如你可以看到两个函数都做相同的事情。唯一的区别是return_dates()给出列表并yield_dates()给发电机。

真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机

其他回答

我本打算张贴“Beazley的“Python:基本参考”第19页,

也注意到yield可以在共程中使用,作为发电机功能的双重用途。 虽然这与您的代码片段不同,(yield)可以在函数中用作表达式。当调用者向使用该函数的方法发送值时send()方法,然后在下一个(yield)遇到的语句。

发电机和共同路线是建立数据流类型应用程序的酷酷方式。yield函数中的语句。

yield函数的返回元素。区别是,yield将一个元素转换成一个生成器。一个生成器的行为就像一个函数,直到某东西“当”为“当”为止。发电机停止直到下一个调用,并且从与开始的完全相同的点继续。您可以通过调用所有“当”值的序列,从一个角度获得所有“当”值的序列。list(generator()).

一个容易理解它是什么的简单例子:yield

def f123():
    for _ in range(4):
        yield 1
        yield 2


for i in f123():
    print (i)

产出是:

1 2 1 2 1 2 1 2

简单使用实例 :

>>> def foo():
    yield 100
    yield 20
    yield 3

    
>>> for i in foo(): print(i)

100
20
3
>>> 

如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。

在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。

在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。

下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。

我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:

  • 我打电话给你,告诉你,我想要一个数字序列 以特定的方式计算, 我让你知道算法是什么。
    此步骤对应于def内插入发电机函数,即包含yield.
  • 稍后,我告诉你, "好了,准备好告诉我数字的顺序"。
    此步骤对应于调用发电机函数, 以返回发电机对象 。注意不要告诉我任何数字 你只要拿起你的纸和铅笔
  • 我问你,"告诉我下一个号码",然后你告诉我第一个号码, 在那之后,你等我问你下一个号码。你的工作是记住你在哪里,你已经说过什么号码,下一个号码是什么。 我不在乎细节。
    此步骤对应于调用next(generator)在发电机的物体上。
    (在Python 2,.next是产生器物体的一种方法;在Python 3中,它被命名为.__next__,但正确的称呼方式是使用内置next()函数类似len().__len__)
  • ...重复前一步,直到...
  • 最终,你可能会走到尽头。你不会告诉我一个数字;你只会喊叫,“抓住你的马!我受够了!不再有数字了!”
    此步骤对应于生成器对象结束工作, 并提升StopIteration例外。
    生成器函数不需要提出例外。 当函数结束或发布时自动生成 。return.

这就是发电机(包含yield;它开始执行第一个next()时暂停yield,当要求next()它从最后一点继续值 。 它的设计完全符合 Python 的迭代协议, 它描述了如何按顺序请求值 。

循环程序最著名的用户是for在 Python 中命令。 所以, 当您做 :

for item in sequence:

这不重要,如果sequence是列表、字符串、字典或生成器对象对象如上文所述;结果相同:您逐个阅读顺序中的项目。

请注意def函数内含有yield关键字不是创建生成器的唯一方法; 它只是创建生成器的最简单的方法 。

将 " 更准确的信息 " 改为 " 更准确的信息 "迭代器类型、、 和收益单报表发电机发电机在 Python 文档中。