何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

关键要点

  • 缩略Python 语法语法使用yieldKywit 关键字可以使函数返回 a发电机发电机.

  • 发电机是一种振动器,这就是在Python发生环绕的主要方式。

  • 发电机基本上是一种可消耗的功能。return返回一个数值,然后结束一个函数,即yield关键字关键字返回一个值并暂停一个函数。

  • 何时next(g)调用一个发电机,函数在剩余部分恢复执行。

  • 只有当函数遇到明示或默示return它实际上结束了。

书写和理解发电机技术

理解和思考发电机的一个简单的方法就是 写一个常规功能print()代替yield:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

当该函数被理解时,替换yield用于print获得产生相同数值的生成器:

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关对象。易可动的你可以环绕过去的东西。振动器是跟踪环状状态的对象。

在循环协议的消费者方面,我们呼叫erier()在可循环的物体上获得一个迭代器。然后我们拨打下一个( )用于从迭代器中检索值的迭代器上的迭代器。当不再有数据时, a停止试提出例外:

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解 并马上开始使用它。 特别是, 写一个函数的把戏print,测试它,然后转换成yield似乎与所有级别的Python程序员合作良好。

其他回答

这是关于什么的心理形象yield确实如此。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

yield函数,当其代码开始运行时(即函数被调用后,返回一个生成对象,该生成对象next()然后引用方法),它同样将其本地变量放在堆叠上,并计算一段时间。但是当它击中yield语句,在清理其部分堆叠并返回之前,它先对本地变量进行速记,然后将其存储在生成器对象中。它还写下它目前在其代码中的位置(即特定yield声明))

所以这是一种冷冻功能 发电机挂在了上面

何时next()函数随后被调用, 它从堆叠上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 忽略了它刚刚在冷藏中度过了永恒时间的事实 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们调用第二个函数时,它的行为与第一个功能非常不同。yield声明可能无法取得, 但如果它存在任何地方, 它会改变我们所处理的事物的性质。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

电 电 电yielderFunction()(也许用它来命名这种东西是个好主意)yielder可读性前缀。 )

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

缩略gi_codegi_frame字段中存储冻结状态的字段。dir(..),我们可以确认 我们的心理模式 上面是可信的。

失败给了你一台发电机

def get_odd_numbers(i):
    return range(1, i, 2)
def yield_odd_numbers(i):
    for x in range(1, i, 2):
       yield x
foo = get_odd_numbers(10)
bar = yield_odd_numbers(10)
foo
[1, 3, 5, 7, 9]
bar
<generator object yield_odd_numbers at 0x1029c6f50>
bar.next()
1
bar.next()
3
bar.next()
5

如你所见,第一种情况foo将整个列表同时保留在记忆中。 对于包含 5 个元素的列表来说, 这不是什么大问题, 但如果您想要 5 百万 的列表, 那又会怎样 ? 这不仅仅是一个巨大的记忆食用器, 在函数被调用时, 它还要花费很多时间来构建 。

在第二个案件中,bar发电机是可循环的 也就是说你可以用在for循环等, 但每个值只能存取一次 。 所有值也并非同时存储在记忆中; 生成器对象“ Remember ” 。 上次您称之为循环时, 生成器对象“ remember ” 正在循环中, 这样, 如果您正在使用一个可( 说) 的转号, 计为 500 亿, 那么您不必同时计为 500 亿, 然后存储500 亿 个数字来进行计算 。

再者,这是一个相当巧妙的例子,如果你真想数到500亿,你可能会使用滑板。 () :

这是发电机中最简单的使用实例。 正如您所说, 它可以用来写高效的变换, 使用产量将东西推到调用堆叠上, 而不是使用某种堆叠变量。 发电机也可以用于专门的树道, 以及各种其它方式 。

想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。

Python 生成器与这个概念没有什么不同。 想象一下, 您有一个函数叫做 Python 。barcode_generator以生成框中独有的序列号。 显然,您可以通过函数返回大量这样的条形码,但受硬件(RAM)的限制。 更明智和空间效率更高的选项是按需生成这些序列号。

机器代码 :

def barcode_generator():
    serial_number = 10000  # Initial barcode
    while True:
        yield serial_number
        serial_number += 1


barcode = barcode_generator()
while True:
    number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
    barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
    print(barcodes)

    # function_to_create_the_next_batch_of_lightbulbs(barcodes)

    produce_more = input("Produce more? [Y/n]: ")
    if produce_more == "n":
        break

注注:next(barcode)位数。

如你所可以看到,我们有一个自成一体的“功能” 每次生成下一个独特的序列号。此函数返回发电机发电机正如你可以看到的,我们不是每次需要新序列号时都调用这个功能,而是在使用新序列号。next()给发电机提供下一个序列号。

低拉隔热器

更确切地说,这个发电机是懒惰的滚动器迭代器是一个能帮助我们穿越物体序列的物体。 它被称为懒惰因为它在需要之前不会在内存中装入序列的全部项目。next在上一个示例中,直 直 直从迭代器获取下一个项目。内含循环方式正在使用 :

for barcode in barcode_generator():
    print(barcode)

这将无穷尽地打印条形码, 但你不会失去内存 。

换句话说,发电机看起来像a 函数但行为举止如迭代器。

现实世界应用?

最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常有用 。 想象一下读取巨大从含有数十亿记录的磁盘文件中取出文件。 在您能够处理其内容之前, 在内存中读取整个文件, 可能会不可行( 也就是说, 您会用完内存 ) 。

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

简单使用实例 :

>>> def foo():
    yield 100
    yield 20
    yield 3

    
>>> for i in foo(): print(i)

100
20
3
>>> 

如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。

在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。

在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。