何为使用yield
Python 中的关键字?
比如说,我在试着理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法_get_child_candidates
是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.
发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。
import time
def get_gen():
for i in range(10):
yield i
time.sleep(1)
def get_list():
ret = []
for i in range(10):
ret.append(i)
time.sleep(1)
return ret
start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()
start_time = time.time()
print('get_list iteration (results come all at once)')
for i in get_list():
print(f'result arrived after: {time.time() - start_time:.0f} seconds')
get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds
get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
缩略yield
keywit 用于查点/ 字符中, 函数预期将返回一个输出。 我想引用此非常简单 。例例A:
# example A
def getNumber():
for r in range(1,10):
return r
上述函数只返回1即使它被多次调用。 如果我们替换return
与yield
以内例B:
# example B
def getNumber():
for r in range(1,10):
yield r
它会回来的1第一次调用时2当日,3,4直至10岁为止的增量。
尽管《公约》例B在概念上是真实的,但称它为Python 3( 3)我们必须采取以下行动:
g = getNumber() #instance
print(next(g)) #will print 1
print(next(g)) #will print 2
print(next(g)) #will print 3
# so to assign it to a variables
v = getNumber()
v1 = next(v) #v1 will have 1
v2 = next(v) #v2 will have 2
v3 = next(v) #v3 will have 3
(我下面的回答只从使用Python发电机的角度,而不是从使用Python发电机的角度,而不是从使用Python发电机的角度来回答发电机机制基本实施,这涉及一些玩弄堆叠和堆积操纵的把戏。 ))
何时yield
使用代替return
在 python 函数中,该函数被转换为特殊的东西,称为generator function
该函数返回generator
类型。缩略yield
关键字是通知 Python 编译者专门处理此函数的标志。正常函数一旦从中返回某些值, 正常函数就会终止。 但是, 在编译器的帮助下, 生成器函数将会终止 。能够被想象到即,执行环境将恢复,执行将持续到最后一年。直到你明确要求返回,这会引起StopIteration
选项(这也是迭代协议的一部分),或达到函数的结尾。我发现很多关于generator
但这个1个调自自functional programming perspective
是最可消化的。
(现在我想谈一下为什么generator
和iterator
我希望这能帮助你掌握基本动机和基本动机这一概念以其他语言出现,如C#。 )
据我所知,当我们想要处理一堆数据时, 我们通常先把数据存放在某处,然后一个一个地处理。但是这个是。幼天如果数据量很大, 事先将数据全部储存起来是昂贵的 。而不是储存data
为什么不直接储存某种metadata
间接,即:the logic how the data is computed
.
有两种方法可以包扎这类元数据。
- OO 方法,我们包封元数据
as a class
这就是所谓的iterator
执行滚动协议(即__next__()
, 和__iter__()
这也是人们所普遍看到的方法。电动电机设计图案.
- 功能方法,我们包封元数据
as a function
这就是所谓的generator function
但是在兜帽帽下, 返回的人generator object
仍为IS-A
因为它还执行传动协议 。
无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。
简单解答
函数至少包含一个时yield
语句,函数自动成为发电机功能。当您调用发电机功能时, python 在发电机功能中执行代码,直到yield
发生声明。yield
当您再次调用发电机功能时, python 继续从冻结位置执行发电机功能中的代码,直到yield
发电机函数执行代码直到发电机功能用完时没有yield
语句。
基准基准基准基准基准基准基准
创建列表并返回它 :
def my_range(n):
my_list = []
i = 0
while i < n:
my_list.append(i)
i += 1
return my_list
@profile
def function():
my_sum = 0
my_values = my_range(1000000)
for my_value in my_values:
my_sum += my_value
function()
结果有:
Total time: 1.07901 s
Timer unit: 1e-06 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
9 @profile
10 def function():
11 1 1.1 1.1 0.0 my_sum = 0
12 1 494875.0 494875.0 45.9 my_values = my_range(1000000)
13 1000001 262842.1 0.3 24.4 for my_value in my_values:
14 1000000 321289.8 0.3 29.8 my_sum += my_value
Line # Mem usage Increment Occurences Line Contents
============================================================
9 40.168 MiB 40.168 MiB 1 @profile
10 def function():
11 40.168 MiB 0.000 MiB 1 my_sum = 0
12 78.914 MiB 38.746 MiB 1 my_values = my_range(1000000)
13 78.941 MiB 0.012 MiB 1000001 for my_value in my_values:
14 78.941 MiB 0.016 MiB 1000000 my_sum += my_value
在飞行上生成值 :
def my_range(n):
i = 0
while i < n:
yield i
i += 1
@profile
def function():
my_sum = 0
for my_value in my_range(1000000):
my_sum += my_value
function()
结果有:
Total time: 1.24841 s
Timer unit: 1e-06 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
7 @profile
8 def function():
9 1 1.1 1.1 0.0 my_sum = 0
10
11 1000001 895617.3 0.9 71.7 for my_value in my_range(1000000):
12 1000000 352793.7 0.4 28.3 my_sum += my_value
Line # Mem usage Increment Occurences Line Contents
============================================================
7 40.168 MiB 40.168 MiB 1 @profile
8 def function():
9 40.168 MiB 0.000 MiB 1 my_sum = 0
10
11 40.203 MiB 0.016 MiB 1000001 for my_value in my_range(1000000):
12 40.203 MiB 0.020 MiB 1000000 my_sum += my_value
摘要摘要摘要
生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。