何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

其他回答

这里所有的答案都是伟大的,但其中只有一个答案(最受投票支持的答案)是真实的。您的代码如何工作其他涉及发电机发电机一般而言,以及它们如何运作。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在Tree对象,该对象执行__iter__以此:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

缩略while candidates语句可以替换为for element in tree; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为Node.__iter__代码里面执行时按迭代执行。 所以执行时会是这样的 :

  1. 根元素是第一个; 检查它是否留下了子子和for切换它们( 我们称它为1, 因为它的第一个迭代对象) 。
  2. 它有一个孩子,所以for执行。for child in self.left创建 a 创建新建新迭代器调自self.left,它是一个节点对象本身(it2)
  3. 和2的逻辑相同 和新的逻辑iterator创建(it3)
  4. 现在我们到达树的左边it3他们没有儿女,所以它是继续的,yield self.value
  5. 下通电话next(it3)它产生StopIteration并且存在,因为它没有子女的权利(直到功能结束,没有任何成果)
  6. it1it2仍在活动----他们没有用尽,也没有召唤。next(it2)将产生价值,而不是提高StopIteration
  7. 现在我们又回到it2和调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调- 调-next(it2)直至它停止时:紧接着yield child语句。由于它不再留下孩子,所以它继续并产生它self.val.

这里的下场是 每一次迭代创建子编辑器以绕过树, 并保持当前迭代器的状态。 一旦它到达尾端, 它就会绕过堆叠, 并按正确的顺序返回值( 最低的收益率先返回 ) 。

您的代码示例在不同的技术中 做了类似的事情: 它包含一个单元素列表每个子子对每个子子子, 然后在下一个迭代中, 它弹出它, 运行当前对象的函数代码( 因此)self).

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。

我本打算张贴“Beazley的“Python:基本参考”第19页,

也注意到yield可以在共程中使用,作为发电机功能的双重用途。 虽然这与您的代码片段不同,(yield)可以在函数中用作表达式。当调用者向使用该函数的方法发送值时send()方法,然后在下一个(yield)遇到的语句。

发电机和共同路线是建立数据流类型应用程序的酷酷方式。yield函数中的语句。

yield用于创建generator。如果将生成器视为一个迭代器,每个迭代都会给您带来价值。当您在循环中使用收益率时,会得到一个生成对象,您可以用该对象从循环中以迭接方式从循环中获取项目

缩略yield关键字缩写为两个简单的事实:

  1. 如果汇编者检测到yield关键字任何地方函数内部的函数,该函数不再通过return语句。取代, 它, 它立即立即返回返回 a“等待列表”对象调用发电机
  2. 发电机是易用的,什么是易 易 易 性它的任何东西 像一个listsetrange或 dict-view, 带有按一定顺序视察每个要素的内建程序规程.

概括地说:最常见的情况是,a 发电机是一个懒惰、递增的待用清单。, 和yield语句允许您使用函数符号来编程列表值发电机应该逐渐吐出来此外,先进用途使你能够使用发电机作为共同路线(见下文)。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上,当yield语句被遇到,函数暂停并保存状态,然后根据 python 传动协议发布“ 列表中下一个返回值” 。next()并捕获aStopIteration您可能遇到过发电机,例如:发电机表达式; 发电机功能更强大,因为您可以将参数反馈到暂停的发电机功能中,用它们来实施共同路线。稍后更多。


基本示例(“清单”)

让我们定义一个函数makeRange和皮松的一模一样range调用makeRange(n)将一个天才:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要迫使发电机立即返回其待处理值, 您可以将它传送到list()(就像你可以 任何可重复的):

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

为了对发电机有更好的感觉,你可以和发电机一起玩itertools模块 (必须使用)chain.from_iterable而不是chain例如,你甚至可能使用发电机来实施无穷无尽的懒惰清单,例如:itertools.count()您可以执行您自己的def enumerate(iterable): zip(count(), iterable),或者与yield时段循环中的关键字 。

请注意:发电机实际上可以用于更多的其他物品,例如:实施共同方案或非确定性编程或其他优雅的东西。 然而, 我在此展示的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 是如何工作的。 也就是说, 当您在list(makeRange(5))。这就是我刚才所说的“懒惰、递增清单”。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内置函数next()只需调用物体.__next__()函数,该函数是“终止协议”的一部分,并在所有迭代器中查找。您可以手动使用next()函数( 以及迭代协议的其他部分) 来实施花哨, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

锥体例如:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

共同常规(通常通过下列途径接受输入的发电机)yielde.g.nextInput = yield nextOutput,作为双向通信的一种形式)基本上是一种计算方法,它允许暂停自己并请求输入(例如,它下一步应该做什么)。当共程本身暂停时(当运行中的共程最终击中yield键,计算被暂停,控制被倒回“调用”功能(要求next暂停的生成器/ coutine 仍然暂停, 直到另一个引用函数( 可能是一个不同的函数/ 变量) 要求下一个值来取消它( 通常通过输入数据将暂停的逻辑内含引导到 coroutine 代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在Python-speak语中,易 易 易 性中“理解“循环”概念的任意对象,如列表[1,2,3],和一个振动器是请求循环( 类似) 的具体实例[1,2,3].__iter__()A. A. A.发电机发电机与任何迭代器完全相同,但文字写法除外(用函数语法)。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

...然后记住发电机是振动器;即,这是一次性使用。如果您想要重新使用它,您应该拨打myRange(...)如果您需要两次使用结果,将结果转换为列表并将其存储在变量中x = list(myRange(5))。那些绝对需要克隆生成器的人(例如,正在做可怕的黑化元方案化的人)可以使用itertools.tee (Python 3仍然在工作(如果绝对必要,自Python PEP 标准提案推迟审议。

简单解答

函数至少包含一个时yield语句,函数自动成为发电机功能。当您调用发电机功能时, python 在发电机功能中执行代码,直到yield发生声明。yield当您再次调用发电机功能时, python 继续从冻结位置执行发电机功能中的代码,直到yield发电机函数执行代码直到发电机功能用完时没有yield语句。

基准基准基准基准基准基准基准

创建列表并返回它 :

def my_range(n):
    my_list = []
    i = 0
    while i < n:
        my_list.append(i)
        i += 1
    return my_list

@profile
def function():
    my_sum = 0
    my_values = my_range(1000000)
    for my_value in my_values:
        my_sum += my_value

function()

结果有:

Total time: 1.07901 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     9                                           @profile
    10                                           def function():
    11         1          1.1      1.1      0.0      my_sum = 0
    12         1     494875.0 494875.0     45.9      my_values = my_range(1000000)
    13   1000001     262842.1      0.3     24.4      for my_value in my_values:
    14   1000000     321289.8      0.3     29.8          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     9   40.168 MiB   40.168 MiB           1   @profile
    10                                         def function():
    11   40.168 MiB    0.000 MiB           1       my_sum = 0
    12   78.914 MiB   38.746 MiB           1       my_values = my_range(1000000)
    13   78.941 MiB    0.012 MiB     1000001       for my_value in my_values:
    14   78.941 MiB    0.016 MiB     1000000           my_sum += my_value

在飞行上生成值 :

def my_range(n):
    i = 0
    while i < n:
        yield i
        i += 1

@profile
def function():
    my_sum = 0
    
    for my_value in my_range(1000000):
        my_sum += my_value

function()

结果有:

Total time: 1.24841 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def function():
     9         1          1.1      1.1      0.0      my_sum = 0
    10
    11   1000001     895617.3      0.9     71.7      for my_value in my_range(1000000):
    12   1000000     352793.7      0.4     28.3          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     7   40.168 MiB   40.168 MiB           1   @profile
     8                                         def function():
     9   40.168 MiB    0.000 MiB           1       my_sum = 0
    10
    11   40.203 MiB    0.016 MiB     1000001       for my_value in my_range(1000000):
    12   40.203 MiB    0.020 MiB     1000000           my_sum += my_value

摘要摘要摘要

生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。