何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

缩略yieldkeywit 用于查点/ 字符中, 函数预期将返回一个输出。 我想引用此非常简单 。例例A:

# example A
def getNumber():
    for r in range(1,10):
        return r

上述函数只返回1即使它被多次调用。 如果我们替换returnyield以内例B:

# example B
def getNumber():
    for r in range(1,10):
        yield r

它会回来的1第一次调用时2当日,3,4直至10岁为止的增量。

尽管《公约》例B在概念上是真实的,但称它为Python 3( 3)我们必须采取以下行动:


g = getNumber() #instance
print(next(g)) #will print 1
print(next(g)) #will print 2
print(next(g)) #will print 3

# so to assign it to a variables
v = getNumber()
v1 = next(v) #v1 will have 1
v2 = next(v) #v2 will have 2
v3 = next(v) #v3 will have 3

其他回答

要理解发电机的产量功能,人们必须理解发电机是什么。 此外,在理解发电机之前,你必须理解易可动的。可操作性:对于创建列表,您自然需要能够逐项阅读每个元素。逐项阅读其项目的过程称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经学会了return语句。

作为类比,returnyield双胞胎。return意指“返回和停止”,而“真正”意指“返回,但继续”

  1. 尝试获得 num_ list 列表return.
def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字 而不是他们的名单。return永远不允许你快乐地胜利, 仅仅一次执行,然后退出。

  1. 来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来yield

替换returnyield:

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

return运行一次,停止一次,yield计划运行时间。您可以解释return计为return one of them, 和yield计为return all of them。这被称为iterable.

  1. 再来一步,我们可以改写yield声明的语中return
In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是核心yield.

列表之间的差别return输出和对象yield输出为 :

您将总是从列表对象中获取 [0, 1, 2] 列表对象, 但只能从“ 对象” 中获取它们yield输出一次。 所以, 它有一个新名称generator对象显示于Out[11]: <generator object num_list at 0x10327c990>.

最后,作为格罗克语的比喻:

  • returnyield双胞胎
  • listgenerator双胞胎

关键要点

  • 缩略Python 语法语法使用yieldKywit 关键字可以使函数返回 a发电机发电机.

  • 发电机是一种振动器,这就是在Python发生环绕的主要方式。

  • 发电机基本上是一种可消耗的功能。return返回一个数值,然后结束一个函数,即yield关键字关键字返回一个值并暂停一个函数。

  • 何时next(g)调用一个发电机,函数在剩余部分恢复执行。

  • 只有当函数遇到明示或默示return它实际上结束了。

书写和理解发电机技术

理解和思考发电机的一个简单的方法就是 写一个常规功能print()代替yield:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

当该函数被理解时,替换yield用于print获得产生相同数值的生成器:

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关对象。易可动的你可以环绕过去的东西。振动器是跟踪环状状态的对象。

在循环协议的消费者方面,我们呼叫erier()在可循环的物体上获得一个迭代器。然后我们拨打下一个( )用于从迭代器中检索值的迭代器上的迭代器。当不再有数据时, a停止试提出例外:

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解 并马上开始使用它。 特别是, 写一个函数的把戏print,测试它,然后转换成yield似乎与所有级别的Python程序员合作良好。

又一个TRL;DR

列表中的迭代器: next()返回列表的下一个元素

热机发电机: next()将计算苍蝇上的下一个元素( 执行代码)

您可以看到生成/生成器作为手动运行控制流量从外部( 如继续循环一步骤) 调用next无论流量如何复杂。

Note发电机是不无一个普通函数。它会像本地变量( stack) 一样记得以前的状态( stack) 。请参看其他答案或文章以详细解释。生成器只能是曾经变热过一次. 你可以没有yield,但它不会是那么好, 所以它可以被认为是“非常好”的语言糖。

还有一件事情要提: 产量的函数其实不一定要终止。我写了这样的代码:

def fib():
    last, cur = 0, 1
    while True: 
        yield cur
        last, cur = cur, last + cur

这样我就可以用在别的代码里了

for f in fib():
    if some_condition: break
    coolfuncs(f);

它确实有助于简化一些问题,使一些事情更容易处理。