何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的,使用yield创建 a 创建generator.

您可以使用yield关键字到将数据发送回“ 实时” 生成器.

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用send生成器内的方法将数据发送回生成器。如果允许, a(yield)使用。

其他回答

想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。

Python 生成器与这个概念没有什么不同。 想象一下, 您有一个函数叫做 Python 。barcode_generator以生成框中独有的序列号。 显然,您可以通过函数返回大量这样的条形码,但受硬件(RAM)的限制。 更明智和空间效率更高的选项是按需生成这些序列号。

机器代码 :

def barcode_generator():
    serial_number = 10000  # Initial barcode
    while True:
        yield serial_number
        serial_number += 1


barcode = barcode_generator()
while True:
    number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
    barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
    print(barcodes)

    # function_to_create_the_next_batch_of_lightbulbs(barcodes)

    produce_more = input("Produce more? [Y/n]: ")
    if produce_more == "n":
        break

注注:next(barcode)位数。

如你所可以看到,我们有一个自成一体的“功能” 每次生成下一个独特的序列号。此函数返回发电机发电机正如你可以看到的,我们不是每次需要新序列号时都调用这个功能,而是在使用新序列号。next()给发电机提供下一个序列号。

低拉隔热器

更确切地说,这个发电机是懒惰的滚动器迭代器是一个能帮助我们穿越物体序列的物体。 它被称为懒惰因为它在需要之前不会在内存中装入序列的全部项目。next在上一个示例中,直 直 直从迭代器获取下一个项目。内含循环方式正在使用 :

for barcode in barcode_generator():
    print(barcode)

这将无穷尽地打印条形码, 但你不会失去内存 。

换句话说,发电机看起来像a 函数但行为举止如迭代器。

现实世界应用?

最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常有用 。 想象一下读取巨大从含有数十亿记录的磁盘文件中取出文件。 在您能够处理其内容之前, 在内存中读取整个文件, 可能会不可行( 也就是说, 您会用完内存 ) 。

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体代替发电机(因为封闭和对象等等同)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)

又一个TRL;DR

列表中的迭代器: next()返回列表的下一个元素

热机发电机: next()将计算苍蝇上的下一个元素( 执行代码)

您可以看到生成/生成器作为手动运行控制流量从外部( 如继续循环一步骤) 调用next无论流量如何复杂。

Note发电机是不无一个普通函数。它会像本地变量( stack) 一样记得以前的状态( stack) 。请参看其他答案或文章以详细解释。生成器只能是曾经变热过一次. 你可以没有yield,但它不会是那么好, 所以它可以被认为是“非常好”的语言糖。

yield简直就像return区别在于,下次你打电话给发电机时,从最后一次呼叫开始执行。yield与返回不同的语句,当生成时, 堆叠框架不会被清理, 但是控件会被转回调用方, 所以下次调用函数时, 它的状态将会恢复 。

对于您的代码,函数get_child_candidates动作就像一个循环器,这样当您扩展列表时,它会一次向新列表添加一个元素。

list.extend在你公布的代码样本中, 只需将图普还给列表, 并附加到列表中, 就会更加清晰 。

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经学会了return语句。

作为类比,returnyield双胞胎。return意指“返回和停止”,而“真正”意指“返回,但继续”

  1. 尝试获得 num_ list 列表return.
def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字 而不是他们的名单。return永远不允许你快乐地胜利, 仅仅一次执行,然后退出。

  1. 来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来yield

替换returnyield:

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

return运行一次,停止一次,yield计划运行时间。您可以解释return计为return one of them, 和yield计为return all of them。这被称为iterable.

  1. 再来一步,我们可以改写yield声明的语中return
In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是核心yield.

列表之间的差别return输出和对象yield输出为 :

您将总是从列表对象中获取 [0, 1, 2] 列表对象, 但只能从“ 对象” 中获取它们yield输出一次。 所以, 它有一个新名称generator对象显示于Out[11]: <generator object num_list at 0x10327c990>.

最后,作为格罗克语的比喻:

  • returnyield双胞胎
  • listgenerator双胞胎