Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

输出允许您通过将循环部分乘以一个便于再利用的单独方法来写出更聪明的编剧。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果您在类似循环中需要调用 g( row) , 您可能会发现自己重复了对数, 并重复了对数的检查, 有效行的检查是无聊、 复杂和容易出错的。 我们不想重复( DRY 原则 ) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 例如 f( row) 和 g( row) 。

您可以设定一个函数, 将 f () 作为输入参数, 但是在一种方法中使用收益率要简单得多, 这种方法可以做所有关于检查有效行的无聊事情, 准备拨打 f () :

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,该方法的每次调用都会返回下一行, 但如果所有行都读取, 并用于结束部分, 方法会正常返回。 下一次调用将开始新的循环 。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。

其他回答

这是关于产量的心理形象。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

当它的代码开始运行时( 即函数被调用后, 返回一个生成对象, 其下一个( ) 方法随后被引用) , 它同样将其本地变量放在堆叠上, 并进行一段时间的计算 。 但是, 当它点击收益语句时, 在清理堆叠中的一部分并返回之前, 它会对其本地变量进行截图, 并将其存储在生成对象中 。 它还写下它目前位于代码中的位置( 即特定收益语句 ) 。

所以这是一种冷冻功能 发电机挂在了上面

当下一个 () 后被调用时, 它会从堆栈上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 无视它刚刚在冷藏室里度过了一个永恒的时间 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们称第二个函数为第二个函数时, 它的行为与第一个函数非常不同。 收益声明可能无法达到, 但是如果它存在任何地方, 它会改变我们正在处理的东西的性质 。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

调用 powerFunction () 不运行它的代码, 而是让一个生成器出自代码 。 (也许用 powerFunction () 的前缀命名这种东西作为可读性是一个好主意 。)

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

gi_ code 和 gi_ frame 字段是存放冻结状态的地方。 使用 dir (.) 来探索它们, 我们可以确认上面的心理模型是可信的 。

要了解什么是产量,你必须了解什么是发电机。在你能够理解发电机之前,你必须了解易燃的发电机。

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

My list 是可替换的。 当您使用列表理解时, 您会创建一个列表, 因而是一个可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

你可以使用的一切"... 在..."是一个可循环的; 列表,字符串,文件...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器, 一种可迭代的循环, 您只能循环一次 。 发电机不会存储记忆中的所有值, 它们会在苍蝇上生成值 :

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了使用()而不是使用()之外,它是一样的。但是,由于发电机只能使用一次,所以不能在我的生成器中为我第二次执行,因为发电机只能使用一次:它们计算0,然后忘记它,然后计算1,然后结束计算4,一个一个一个地计算。

产量d

函数将返回一个生成器。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

要掌握输出能力, 您必须明白当您调用函数时, 您在函数体中写入的代码没有运行。 函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它离开的每一次 使用发电机。

现在,硬的部分:

第一次调用您函数所创建的生成器对象时, 它会运行您函数的代码, 从开始到它产生, 然后返回循环的第一个值。 然后, 以后每次调用都会运行您在函数中写入的循环的再次迭代, 然后返回下一个值。 这将一直持续到生成器被认为是空的, 当函数运行时不会打出收益。 这可能是因为循环结束, 或者因为您不再满足“ if/ else ” 。


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

在列表中循环迭代, 但列表会随着循环迭代而扩展。 这是一个简单的方式来查看所有这些嵌套的数据, 即使它是一个有点危险的, 因为您可以以无限环结束。 在此情况下, 候选人 。 extendend( rode._ get_ child_ camedates( root, min_ dist, max_ distist)) 将耗尽所有生成器的值, 但同时继续创建新生成的生成对象, 这些对象将产生与先前的相异的值, 因为它不会被应用到同一个节点上 。 扩展 () 方法是一种列表对象方法, 期待一个可重复的列表对象方法, 并将其添加到列表中 。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

你不需要两次阅读这些值。 你可能有很多孩子, 你不想把他们都保存在记忆中。

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注: Python 3, 使用打印( corner_street_atm._next___ ()) 或打印( ext( corner_ street_ atm) )

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertool 模块包含操作可替换文件的特殊功能 。 是否想要复制一个生成器? 连锁二生成器? 组值在单行的嵌套列表中? 地图/ Zip 不创建另一个列表 ?

然后就进口它的工具。

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭代是一个过程, 意味着可迭代( 实施 _ etre_ () 方法) 和迭代( 实施 ext_ () 方法) 。 迭代是您可以从中获取迭代器的任何对象。 迭代器是允许您循环到可迭代的物体 。

本文中有更多关于环环如何运作的论述。

(我下面的回答只是从使用Python发电机的角度,而不是从发电机机制的基本实施角度,后者涉及一些堆叠和堆积操纵的伎俩。 )

当在 python 函数中使用 quot 而不是返回时, 该函数将被转换为特殊的名称 。 此函数将返回生成器类型的对象 。 产量关键字是提醒 python 编译器专门处理此函数的旗帜 。 正常函数一旦从中返回某些值就会终止 。 但是, 在编译器的帮助下, 生成器的函数可以被视为可恢复 。 也就是说, 执行环境将会恢复, 执行会从上次运行时继续 。 直到您明确调回, 这会引起一个停止引力例外( 也是循环协议的一部分) , 或者到达函数的终点 。 我发现许多关于生成器的引用, 但从功能编程角度来说, 这是一种最可消化的引用 。

(现在我想谈谈产生者背后的理由, 以及基于我自己的理解的循环器。 我希望这能帮助你掌握循环器和生成者的基本动机。 这一概念以其他语言出现, 如 C# 。 )

据我所知,当我们想要处理一大批数据时,我们通常先在某处储存数据,然后逐个处理。但这种天真的方法有问题。如果数据量很大,那么事先将数据全部储存起来费用很高。因此,与其直接储存数据本身,不如间接储存某种元数据,即数据计算逻辑。

有两种方法可以包扎这类元数据。

OO 方法, 我们把元数据包成一个类。 这是执行循环协议( 即 __ next_ () 和 __ ter_ () 方法) 的所谓迭代器。 这也是常见的迭代器设计模式 。 功能方法, 我们将元数据包成函数 。 这是所谓的生成功能 。 但是在引擎盖下, 返回的生成对象仍然是 IS - A 迭代器, 因为它也执行循环程序 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。

总之,产出语句将您的函数转换成一个工厂,该工厂生产一个特殊对象,称为发电机,围绕您原始函数的正文包绕。当生成器被迭代时,它将执行您的函数,直到达到下一个输出时,然后中止执行,然后对传递到的数值进行评估。它重复了每次迭代的这一过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创建一个自己的范围函数, 产生一个可循环的数字范围, 你可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

您创建了一个只使用一次的数组( 此废物内存) 。 此代码实际上会两次循环到该数组上 ! : () : ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代中, 调用下一个发电机的函数执行该函数, 直至它到达“ ield” 语句停止和“ ields” 值, 或到达函数的终点。 在第一次调用的情况下, 下一个( ) 执行到产出语句, 并产生“ n ” , 下次调用它将执行递增语句, 跳回“ 此时” , 评估它, 如果是, 它会停止并再次产生“ n ” , 它会一直持续到状态返回错误, 发电机跳到函数结束的时候 。

虽然很多答案都表明你为什么用一个产量来创建发电机, 但对于产量来说却有更多的用途。 做一个共同的习惯很容易, 这样可以让信息在两个代码区块之间传递。 我不再重复任何已经给出的关于使用产量来创建发电机的好例子 。

为了帮助理解下一个代码中的产值, 您可以用手指通过任何有产值的代码来追踪循环。 每次你的手指碰到产量的代码时, 您必须等待下一个或发送输入。 调用下一个代码时, 您可以跟踪代码, 直到你到达产量... 产值右侧的代码被评估并返回到调用者... 然后您等待。 当调用下一个代码时, 您会通过代码执行另一个循环。 但是, 您会注意到, 产值也可以用一个发送方式来使用。 发送时, 将会将一个调用器的值发送到产值中 。 如果发送了, 则会收到发送的值, 然后将其从左侧吐出... , 然后通过代码的跟踪直到您再次到达产量( 返回最后的值, 如下一个调用 ) 。

例如:

>>> def coroutine():
...     i = -1
...     while True:
...         i += 1
...         val = (yield i)
...         print("Received %s" % val)
...
>>> sequence = coroutine()
>>> sequence.next()
0
>>> sequence.next()
Received None
1
>>> sequence.send('hello')
Received hello
2
>>> sequence.close()