我如何使用timeit来比较我自己的函数(如“insertion_sort”和“tim_sort”)的性能?


当前回答

让我们在以下每个语句中设置相同的字典并测试执行时间。

setup参数基本上是设置字典

编号是运行代码1000000次。不是设置,而是stmt

当你运行这个时,你会发现index比get快得多。您可以多次运行它来查看。

这段代码基本上是试图从字典中获取c的值。

import timeit

print('Getting value of C by index:', timeit.timeit(stmt="mydict['c']", setup="mydict={'a':5, 'b':6, 'c':7}", number=1000000))
print('Getting value of C by get:', timeit.timeit(stmt="mydict.get('c')", setup="mydict={'a':5, 'b':6, 'c':7}", number=1000000))

这是我的结果,你的结果会有所不同。

按索引:0.20900007452246427

get: 0.54841166886888

其他回答

您将创建两个函数,然后运行与此类似的程序。 注意,您希望选择相同的执行/运行数来比较apple和apple。 这是在Python 3.7下测试的。

下面是便于复制的代码

!/usr/local/bin/python3
import timeit

def fibonacci(n):
    """
    Returns the n-th Fibonacci number.
    """
    if(n == 0):
        result = 0
    elif(n == 1):
        result = 1
    else:
        result = fibonacci(n-1) + fibonacci(n-2)
    return result

if __name__ == '__main__':
    import timeit
    t1 = timeit.Timer("fibonacci(13)", "from __main__ import fibonacci")
    print("fibonacci ran:",t1.timeit(number=1000), "milliseconds")
# Генерация целых чисел

def gen_prime(x):
    multiples = []
    results = []
    for i in range(2, x+1):
        if i not in multiples:
            results.append(i)
            for j in range(i*i, x+1, i):
                multiples.append(j)

    return results


import timeit

# Засекаем время

start_time = timeit.default_timer()
gen_prime(3000)
print(timeit.default_timer() - start_time)

# start_time = timeit.default_timer()
# gen_prime(1001)
# print(timeit.default_timer() - start_time)

简单地传递你的整个代码作为timeit参数:

import timeit

print(timeit.timeit(

"""   
limit = 10000
prime_list = [i for i in range(2, limit+1)]

for prime in prime_list:
    for elem in range(prime*2, max(prime_list)+1, prime):
        if elem in prime_list:
            prime_list.remove(elem)
"""   
, number=10))

对我来说,这是最快的方法:

import timeit
def foo():
    print("here is my code to time...")


timeit.timeit(stmt=foo, number=1234567)

如何使用带有接受参数的函数的Python REPL解释器的示例。

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161