我一直是一个简单使用的人:

List<String> names = new ArrayList<>();

我使用接口作为可移植性的类型名称,这样当我问类似这样的问题时,我就可以修改代码。

LinkedList何时应用于ArrayList,反之亦然?


当前回答

Algorithm           ArrayList   LinkedList
seek front            O(1)         O(1)
seek back             O(1)         O(1)
seek to index         O(1)         O(N)
insert at front       O(N)         O(1)
insert at back        O(1)         O(1)
insert after an item  O(N)         O(1)

算法:Big Oh符号(存档)

ArrayList适用于一次写入、多次读取或追加,但不适用于从前面或中间添加/删除。

其他回答

ArrayList本质上是一个数组。LinkedList实现为双链接列表。

答案很清楚。O(1)表示ArrayList,因为ArrayList允许使用索引进行随机访问。O(n)表示LinkedList,因为它需要首先查找索引。注意:添加和删除有不同的版本。

LinkedList在添加和删除时速度更快,但在获取时速度较慢。简而言之,在以下情况下,应首选LinkedList:

元素没有大量的随机访问有大量的添加/删除操作

==阵列列表===

添加(E E)在ArrayList末尾添加需要内存大小调整成本。O(n)最差,O(1)摊销add(int索引,E元素)添加到特定索引位置需要移动和可能的内存调整成本O(n)删除(int索引)删除指定的元素需要移动和可能的内存调整成本O(n)删除(对象o)从此列表中删除第一个出现的指定元素需要先搜索元素,然后移动&可能的内存调整成本O(n)

==链接列表===

添加(E E)添加到列表末尾O(1)add(int索引,E元素)在指定位置插入需要先找到位置O(n)删除()删除列表的第一个元素O(1)删除(int索引)删除具有指定索引的元素需要先找到元素O(n)删除(对象o)删除指定元素的第一个引用需要先找到元素O(n)

这是programcreek.com中的一个图(add和remove是第一种类型,即在列表末尾添加元素,然后在列表中的指定位置删除元素):

TL;DR由于现代计算机体系结构,ArrayList对于几乎所有可能的用例都将显著提高效率,因此除了一些非常独特和极端的情况外,应避免使用LinkedList。


理论上,LinkedList的add(E元素)有一个O(1)

此外,在列表中间添加元素应该非常有效。

实践非常不同,因为LinkedList是一个缓存敌对数据结构。从性能POV来看,LinkedList很少比缓存友好的ArrayList性能更好。

以下是在随机位置插入元素的基准测试结果。如您所见,数组列表效率更高,但理论上,每次在列表中间插入都需要“移动”数组后面的n个元素(值越低越好):

使用新一代硬件(更大、更高效的缓存),结果更为确凿:

LinkedList需要更多的时间来完成相同的任务。源源代码

这主要有两个原因:

主要是LinkedList的节点在内存中随机分布。RAM(“随机存取存储器”)不是真正随机的,需要将内存块提取到缓存中。此操作需要时间,并且当此类提取频繁发生时,缓存中的内存页需要一直被替换->缓存未命中->缓存效率不高。ArrayList元素存储在连续内存中——这正是现代CPU架构正在优化的目标。Secondary LinkedList需要保留/转发指针,这意味着与ArrayList相比,每个存储值的内存消耗是3倍。

顺便说一句,DynamicIntArray是一个自定义ArrayList实现,它保存Int(原始类型)而不是Object,因此所有数据都是相邻存储的,因此效率更高。

需要记住的一个关键因素是,获取存储块的成本比访问单个存储单元的成本更重要。这就是为什么读卡器1MB的顺序存储器比从不同内存块读取此数据量快x400倍的原因:

Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference                           0.5 ns
Branch mispredict                            5   ns
L2 cache reference                           7   ns                      14x L1 cache
Mutex lock/unlock                           25   ns
Main memory reference                      100   ns                      20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy             3,000   ns        3 us
Send 1K bytes over 1 Gbps network       10,000   ns       10 us
Read 4K randomly from SSD*             150,000   ns      150 us          ~1GB/sec SSD
Read 1 MB sequentially from memory     250,000   ns      250 us
Round trip within same datacenter      500,000   ns      500 us
Read 1 MB sequentially from SSD*     1,000,000   ns    1,000 us    1 ms  ~1GB/sec SSD, 4X memory
Disk seek                           10,000,000   ns   10,000 us   10 ms  20x datacenter roundtrip
Read 1 MB sequentially from disk    20,000,000   ns   20,000 us   20 ms  80x memory, 20X SSD
Send packet CA->Netherlands->CA    150,000,000   ns  150,000 us  150 ms

来源:每个程序员都应该知道的延迟数

为了让这一点更加清晰,请检查在列表开头添加元素的基准。这是一个用例,从理论上讲,LinkedList应该非常出色,而ArrayList应该呈现出糟糕甚至更糟糕的用例结果:

注意:这是C++标准库的一个基准测试,但我以前的经验表明C++和Java的结果非常相似。源代码

复制连续的大量内存是一种由现代CPU改变理论优化的操作,实际上也使ArrayList/Vector更加高效


致谢:这里发布的所有基准都是由Kjell Hedström创建的。在他的博客上可以找到更多的数据

这取决于您将在列表中执行更多操作。

ArrayList访问索引值更快。插入或删除对象时,情况更糟。

要了解更多信息,请阅读任何关于数组和链接列表之间区别的文章。

您可以根据对该特定列表执行的操作的时间复杂性,使用一个而不是另一个。

|---------------------|---------------------|--------------------|------------|
|      Operation      |     ArrayList       |     LinkedList     |   Winner   |
|---------------------|---------------------|--------------------|------------|
|     get(index)      |       O(1)          |         O(n)       | ArrayList  |
|                     |                     |  n/4 steps in avg  |            |
|---------------------|---------------------|--------------------|------------|
|      add(E)         |       O(1)          |         O(1)       | LinkedList |
|                     |---------------------|--------------------|            |
|                     | O(n) in worst case  |                    |            |
|---------------------|---------------------|--------------------|------------|
|    add(index, E)    |       O(n)          |         O(n)       | LinkedList |
|                     |     n/2 steps       |      n/4 steps     |            |
|                     |---------------------|--------------------|            |
|                     |                     |  O(1) if index = 0 |            |
|---------------------|---------------------|--------------------|------------|
|  remove(index, E)   |       O(n)          |         O(n)       | LinkedList |
|                     |---------------------|--------------------|            |
|                     |     n/2 steps       |      n/4 steps     |            |
|---------------------|---------------------|--------------------|------------|
|  Iterator.remove()  |       O(n)          |         O(1)       | LinkedList |
|  ListIterator.add() |                     |                    |            |
|---------------------|---------------------|--------------------|------------|


|--------------------------------------|-----------------------------------|
|              ArrayList               |            LinkedList             |
|--------------------------------------|-----------------------------------|
|     Allows fast read access          |   Retrieving element takes O(n)   |
|--------------------------------------|-----------------------------------|
|   Adding an element require shifting | o(1) [but traversing takes time]  |
|       all the later elements         |                                   |
|--------------------------------------|-----------------------------------|
|   To add more elements than capacity |
|    new array need to be allocated    |
|--------------------------------------|

我知道这是一篇老帖子,但我真的不敢相信没有人提到LinkedList实现了Deque。只需查看Deque(和Queue)中的方法;如果您希望进行公平的比较,请尝试对ArrayDeque运行LinkedList,并进行功能比较。